
Tools for Teaching Computational
Mathematics

Matthew Paul Skerritt
B.CompSc, B.Math(Hons)

Discipline of Mathematics, University of Newcastle
Callaghan, NSW, 2308, Australia

Thesis submitted for the degree of
Masters of Philosophy (Mathematics)

March 2014

Statement of Originality

This work contains no material which has been accepted for the award of any other
degree or diploma in any university or other tertiary institution and, to the best of my
knowledge and belief, contains no material previously published or written by another
person, except where due reference has been made in the text. I give consent to this copy
of my thesis, when deposited in the University Library, being made available for loan and
photocopying subject to the provisions of the Copyright Act 1968.

Signature: .. Date:

iii

Thesis by Publication

I hereby certify that this thesis is in the form of a pair of published books of which
I am a joint author. I have included as part of the thesis a written statement from each
co-author, endorsed by the Faculty Assistant Dean (Research Training), attesting to my
contribution to the joint publications.

Signature: .. Date:

v

Statement of Contribution

I, Jonathan M. Borwein, attest that Master of Philosophy (Mathematics) candidate
Matthew P. Skerritt was the principal author of the publications entitled “An Introduc-
tion to Modern Mathematical Computing with Maple” and “An Introduction to Modern
Mathematical Computing with Mathematica” and wrote the full draft of both texts.

Signature: .. Date:

Laureate Professor Jonathan M. Borwein

Signature: .. Date:

Matthew P Skerritt

Signature: .. Date:

Associate Professor Jenny Cameron
Assistant Dean Research and Training

vii

Abstract

So called “computer algebra” or “symbolic computation” systems such as Maple, and
Mathematica have become complete mathematical computation workspaces with a large
and constantly expanding built-in “knowledge base”. They aim to provide exact mathe-
matical answers to mathematical questions, and have opened the way for so called “experi-
mental” computer-assisted mathematics in both the pure and applied fields. Furthermore,
it has been only recently (perhaps the last 5 to 10 years or so) that personal computers
have been quick enough that one might feasibly experiment with mathematics applicable
to a second year student at a cognitively satisfying speed for the learner. The author has
designed a second year mathematics course to introduce students to computer algebra sys-
tems, and has written textbooks to go with the course: “An Introduction to Mathematical
Computing with Maple”1, and “An Introduction to Mathematical Computing with Math-
ematica”2. We discuss the process of creation of both the course and the books, and the
differences between our approach, and prior approaches.

1ISBN: 978-1-4614-0121-6, URL: http://www.springer.com/mathematics/book/978-1-4614-0121-6
2ISBN: 978-1-4614-4252-3, URL: http://www.springer.com/mathematics/book/978-1-4614-4252-3

ix

http://www.springer.com/mathematics/book/978-1-4614-0121-6
http://www.springer.com/mathematics/book/978-1-4614-4252-3

Table of Contents

Statement of Originality iii

Thesis by Publication v

Statement of Contribution vii

Abstract ix

Chapter 1. Introduction 1
1. Notation 1
2. Background 1
3. Existing Literature 2
4. Supplementary Material 4

Chapter 2. Maple 5
1. Number Theory 7
2. Calculus 13
3. Linear Algebra 14
4. Visualisation and Geometry 15

Chapter 3. Mathematica 17
1. Number Theory 18
2. Calculus 20
3. Linear Algebra 21
4. Visualisation and Geometry 21

Chapter 4. Epilogue 23

References 25

Appendix A. Exercise Guide 27

xi

CHAPTER 1

Introduction

“An Introduction to Modern Mathematical Computing with Maple” was published in
July 2011 and “An Introduction to Modern Mathematical Computing with Mathematica”
was published in August 2012. The author has designed a second year mathematics course
to introduce students to computer algebra systems, and has written the aforementioned
textbooks to complement this course. The texts constitute the thesis proper. The purpose
of this document is to provide context to the creation of the texts and the course, as well
as to detail the decision processes that were part of their creation.

1. Notation

For the duration of this document, “An Introduction to Modern Mathematical Com-
puting with Maple” will be referred to as the Maple text, and similarly “An Introduction
to Modern Mathematical Computing with Mathematica” as the Mathematica text. Collec-
tively they will be referred to as the texts, and individually as the text when the context
is unambiguous. When referring to sections or subsections of the text, the § symbol will
be used (e.g., §1.1.3 of the Maple text). When referring to subsections or sections within
this document, the word “Section” will be used (e.g., Section 3.2)

2. Background

So-called “computer algebra” or “symbolic computation” systems such as Maple, and
Mathematica have become complete mathematical computation workspaces with a large
and constantly expanding built-in “knowledge base”. They aim to provide exact mathe-
matical answers to mathematical questions, and have opened the way for so-called “ex-
perimental” computer-assisted mathematics in both the pure and applied fields.

Such systems are not especially new; Maple dates back to 1980, and Mathematica
was first released in 1988. However, it has been only in the last decade that personal
computers have become sufficiently powerful that a learner might feasibly experiment
with mathematics applicable to a second year student at a satisfying speed.

The University of Newcastle introduced a mathematical software course shortly before
the year 2000.1 The course was named “Mathematical Software” and had the course
code MATH2600. It consisted of six weeks introducing students to LATEX, and six weeks
introducing students to Maple.

In 2008 Professor Jon Borwein, having recently taken a position at the University of
Newcastle, set about updating the course to better reflect the use of computer algebra in
1The exact number of years is hard to pin down, as the beginning of the course predates widespread use
of computerised record keeping within the Mathematics department.

1

2 1. INTRODUCTION

modern mathematics. He found that no suitable reference material existed. Consequently
the author was given the tasks of re-designing the course, and producing course notes
which would later be turned into a textbook. The process was iterative over several years,
simultaneous with teaching the course.

The brief for the updated course was for it to cover four broad topics: Number Theory,
Calculus, Linear Algebra, and Visualisation and Geometry. Exploration and experimen-
tation were to be important aspects of the new course. The remainder of the details were
left to the author, who chose to use familiar first-year mathematics to introduce students
to computer-assisted mathematics. An assessment schedule was chosen consisting of a
two-hour laboratory test at the end of each topic, as well as a final assignment in which
students explore a new (to the student) mathematical topic of their choice.

An important consideration was to teach mathematics primarily and computer algebra
tools secondarily. The computer algebra system was treated as a tool whose use was to
a greater end: to explore and learn mathematics. This philosophy is in keeping with
Borwein’s own work in the areas of experimental mathematics [2, 3, 4, 5].

Although the updated course was originally intended to introduce students to experi-
mental and computer-assisted mathematics, the teaching of the course has suggested that
computer algebra systems may very well be an effective tool for students in learning and
understanding more traditional mathematics.

3. Existing Literature

The following texts were evaluated for the course:
“The Maple V Primer” and “The Maple Book” both by Frank Garvan [7, 8] are good

introductions and guides to Maple. They were unsuitable primarily because they describe
a significantly older version of Maple than was being used in the course (version 5 in the
books and version 12 in the course). Of note is that [8] works through mathematical
topics in the order usually experienced by a student not using a CAS: starting with High
School Algebra, then moving through Calculus, Differential Equations, Linear Algebra,
Multivariable and Vector Calculus, Complex Analysis, Special Functions, and Statistics.
Interspersed between these topics, where appropriate, are chapters dealing with Maple
specific notions such as Data Types, Graphics, Programming, and the like.

“Introduction to Maple” by André Heck [10] is an excellent resource, but has two
properties that make it unsuitable as a course text. Firstly, it is written for a version
of Maple that is too old (specifically, version 8).2 Secondly, its main aim is to teach
Maple whereas the primary goal of our course is to teach mathematics. It should be
noted, however, that the means with which it teaches Maple involves good and interesting
mathematical examples. Despite its age, it is a highly effective text and covers the technical
particulars of Maple in far greater detail than the texts that form the basis of this thesis.

2We should note that at the time of writing this document version 18 of Maple has only just been released,
however the author has not yet had a chance to use it. Even though the Maple text was written for version
12 of the software, no changes have been introduced in the intervening versions (up to version 17) which
would require any significant change in the content of the text.

3. EXISTING LITERATURE 3

It is an excellent supplemental text for students or readers who wish to know more about
Maple itself and is highly recommended by the author.

In the book “Solving Problems in Scientific Computing Using Maple and Matlab” by
Gander and Hřebíček [6] each chapter is dedicated to a single problem which is presented
mathematically and explored using Maple or Matlab. However, the book presents topics
more advanced than we teach in MATH2600 and makes no effort to introduce Maple.3 As
such, it was unsuitable for the course.

“A Short Course in Mathematical Methods with Maple” by Henrik Aratyn and Con-
stantin Rasinariu [1] also presents topics too advanced for use in the course as planned.
It is written for Maple version 10, which is older than the version being used at the time
of the course update, but the book is still recent enough to be serviceable. The book also
assumes, for the most part, existing familiarity with Maple, and provides only an appendix
by way introduction for the reader not already familiar. What is remarkable about this
book is the way it presents the material. The first two thirds of the book, consisting of
seven chapters, is a typical mathematical treatise on the topics in question. The final third
of the book, consisting also of seven chapters, covers the same topic as the original seven
chapters (in the same order), this time using Maple. It would be a good book for students
to graduate to using after completing the course.

“Geometry of Curves and Surfaces with Maple” by Vladimir Rovenski [11] is too
specific in its topic area to be considered as a text for the MATH2600 course. Additionally,
some of its topics are a little too advanced use in the course. It is written in a manner very
similar to that adopted by the author for the Maple and Mathematica texts and would
make a good project resource for a strong student’s final assignment.

“Mathematica in Action” by Stan Wagon [12] was unsuitable for the project because it
was written for Mathematica, not for Maple. The aim of the book appears to be primarily
to teach Mathematica, however it is worth noting because it does so by interspersing
unusual or complicated examples throughout the book (among examples more familiar to
most readers). Unfortunately, the topics covered do not cover quite as many of the topics
the author wished to cover in the updated course. The second edition (cited here, and
in the texts as well) is reasonably old—published in 1999—and the third edition was not
published until 2010.

“Exploring Mathematics with Mathematica” by Theodore W. Gray and Jerry Glynn
[9] is a remarkable book that is written entirely as a dialogue between the two authors,
and occasional guests. However, it was unsuitable for our purposes due to being a book
about Mathematica, not Maple. The writing style allows Gray and Glynn to simulta-
neously present mathematics primarily, and Mathematica secondarily, and to also give a
first hand demonstration of computer assisted mathematical exploration and experimen-
tation in action. This book was published in 1991 and references Mathematica version 2.4

Regrettably, it appears that no new versions have been published.

3The preface explicitly states that the book is aimed at students already familiar with Maple.
4For reference, the current version of Mathematica is version 9, and version 7 was current at the time the
MATH2600 course was first being restructured

4 1. INTRODUCTION

4. Supplementary Material

Note that a website for the books is being maintained at http://carma.newcastle.
edu.au/books/mathematicalcomputing/. At this address can be found: supplementary
files containing every piece of Maple or Mathematica code found in the texts (as worksheet
or notebook files respectively), solutions to exercises, errata, and exercise guides. The
exercise guide is included in Appendix A, and the reader is encouraged go to the website
if they wish to make use of the other resources.

http://carma.newcastle.edu.au/books/mathematicalcomputing/
http://carma.newcastle.edu.au/books/mathematicalcomputing/

CHAPTER 2

Maple

The Maple text began as a set of course notes for the updated MATH2600 course which
were written over a semester while teaching the course and, at the end of the semester,
were then modified in accordance with the teaching experiences. The course was taught
two subsequent times and each time the notes were modified according to the teaching
and learning experiences.

As noted previously, the overriding philosophy of both the course and the notes was
that the computer environment and code should be subservient to the mathematics. We
did not wish to write a “How to use Maple” book, nor to teach such a course. Maple was
very much treated as a means to an end; that end being to learn and explore mathematics.
Nonetheless, familiarity with Maple and its peculiarities was a necessary by-product of the
chosen approach.

The then current version of Maple (version 12) used, by default, a “pretty-printed”
input scheme known as “2D Input”. This input mode automatically typesets superscripts,
subscripts, fractions, and the like in a mathematical manner. Versions prior to version
10 used a textual input mode, now referred to as “Maple Input”, which could be much
more difficult to read for complicated expressions. For example, the equation for the nth
Fibonacci number √

5
5 ·

((
1 +
√

5
2

)n
−
(

1−
√

5
2

)n)
would, in 2D input, look like

sqrt(5)
5 ·

((1 + sqrt(5)
2

)n
−
(1− sqrt(5)

2

)n)
and in Maple input would look like

(sqrt(5)/5)*(((1+sqrt(5))/2)ˆn-((1-sqrt(5))/2)ˆn)

We wanted the mathematics on the screen to be as close as possible to mathematics as
written on paper within the limitations afforded by prose and ease of input. Note that the
2D input presented above is able to be entered into Maple using only the keyboard. Maple
will automatically move to a superscript position when ˆ (caret) is pressed, or to a subscript
when _ (underscore) is pressed, or create a fraction when / (forward slash) is pressed.
It is possible to input the fully typeset expression—including the radical symbols—by
using the mouse to select from a collection of template expressions from a GUI sidebar.
However, given the limitations of describing GUI manipulation in prose and the inherent
awkwardness of using such a GUI, it was decided to use the subset of the 2D input scheme
which could be entirely entered via keyboard.

5

6 2. MAPLE

In order to have the Maple code in the text look as similar as possible to that which the
student or reader sees on screen, it was required to write our own LATEX environment for
the display of the Maple environment. We discovered that an important part of this was
the replication of the colours used by Maple. A student working with a black-and-white
printout of the first draft of course notes expressed confusion regarding the Maple code
found at the bottom of what is now p72. Specifically, the student had mistaken the output
of plot1 := PLOT (. . .) as an input they were expected to enter. This was despite the
fact that the output was differentiated by being centred on the page (whereas the input
is left-aligned). Adding the appropriate colour to the printout (blue for Maple output)
has entirely removed this confusion. We were fortunate that the publishers were happy to
print the entire book in colour.

Much time was expended in the search for examples which fit within a remarkably thin
band of being complicated enough to require (or, at the very least, benefit from) the use
of a computer algebra system on the one hand, and yet still be accessible to second year
students on the other. The process involved several iterations of teaching the MATH2600
course and seeing first hand how the students dealt with the material. It turns out that
some problems that would be difficult on pen and paper alone become accessible to second
year students with the aid of the computer (the Collatz conjecture is a clear example).

Similarly, some mathematical concepts beyond the ability of the students to manipu-
late directly can be introduced and explored with the aid of the computer, such as solving
the Bessel equations (see Chapter 2, Exercise 9). The student may trust the system to
handle the computations that they themselves are not capable of performing manually,
and may rely on more fundamental understandings of the mathematical elements in ques-
tion (differential equations in the case of the Bessel equations) to verify the results of
these computations. A common technique with differential equations is to simply substi-
tute the solution into the differential equation itself. Multiple avenues of such verification
may be employed, reinforcing the student’s understanding of the core concepts. In this
way advanced mathematics may be introduced earlier than would have been previously
possible.

Nevertheless, there was a thin line to be trod. Examples and problems could quickly
become intractable for students, even with the aid of the system. Conversely, if problems
were not sufficiently difficult or time consuming to solve by hand, then the student may not
be sufficiently motivated to learn the new computational techniques. In one particularly
memorable example, a student answered an exam question regarding the largest element of
a Fibonacci-like sequence less than 1,000,000 (see p204 in the text) by essentially manually
computing approximately twenty nine additions, one input block at a time.

Other considerations for the text were: 1) selection and ordering of material in such
a way as to be accessible to the student and self-contained, and 2) adherence to a nar-
rative, both of which needed to take practical considerations into account. For example,
it was originally envisaged that the Linear Algebra chapter would precede the Calculus
chapter, as the concepts are somewhat simpler, or at least more directly applicable to
CAS computation. However, our students see calculus before they see linear algebra and

1. NUMBER THEORY 7

so are more familiar with it. Furthermore, many students took the Linear Algebra course
simultaneously with the MATH2600 course, and so delaying the Linear Algebra portion
of the course (and hence the text) was more pragmatic.

Some students who are familiar with programming have wondered why they would
use Maple instead of their language of choice. This is a reasonable question; much of the
material covered in the first chapter can be performed almost as easily, and with quicker
execution times, in a compiled language (such as C, C++, or Java). The algebraic nature
of Maple’s language combined with manipulation of sets and lists provide accessibility
to students with little or no programming background, largely bypassing many of the
technicalities and confusions common when learning to program. To the student already
comfortable or competent with programming, such features may seem less appealing.

A more significant capability of Maple to distinguish it from traditional programming
languages1 is that of symbolic computation. For example, the sum and product functions
from Chapter 1, as well as the recurrence recursion solver rsolve. However, it is in
Chapter 2 that symbolic computation is most readily seen, with: limit calculations (limit),
differentiation and integration (int, diff,D), integral manipulation via the IntegrationTools
package, and differential equation solving (dsolve). Students both strong and weak in
programming may benefit from symbolic computation.

Herein, we discuss notable considerations of the decision making process, as well as
aspects of the content of the texts or the course material that may not be immediately
apparent at first glance.

1. Number Theory

The intent of this chapter is to introduce students to the new Maple environment
with either familiar or readily accessible mathematics. As such, this chapter deals with
elementary number theory, as well as some concepts from first year discrete mathematics.
Mathematics involving integers, primes, or other discrete mathematical objects (such as
recurrence relations) should be accessible to the students mathematically, allowing them to
concentrate more on how Maple works, and how it can help them better see mathematical
concepts and ideas.

A related secondary goal is to introduce new (but still easily accessible) concepts to
the students which the computer could help to illustrate. It is with this secondary goal in
mind that continued fractions are introduced and explored (§1.3.2), as well as the Sieve
of Eratosthenes (§1.3.4). We discuss these examples specifically in detail below.

1.1. §1.1 “Introduction to Maple”. Although the overriding philosophy of the
texts is to use mathematics to motivate the computer code (and not the other way around),
before this can be done the computer code needs to be introduced. As such, the entire
first subsection (§1.1) deals with introducing Maple for its own sake, without any moti-
vating mathematical problems. The chapter establishes what the author considers to be
elementary “building blocks” of Maple (and, to some extent, programming in general):

1Distinguishing in terms of capability readily present in the core language or standard libraries.

8 2. MAPLE

expressions, variables, functions, sequences, lists, and sets. It is with combination of these
basic tools that the student will do everything else.

It should be noted here that some of the elementary concepts, such as variables and
functions, will be immediately familiar to any student or reader with experience in any
programming language. Such a background is not necessary and is not assumed by the
authors. In some ways, experience in programming can be a hindrance as much as a
help. There are problems whose implementation in Maple is much more elegant, and
even computationally faster if the user thinks like a mathematician and makes use of
Maple’s inbuilt mathematical structure; for example, using sets to implement the Sieve of
Eratosthenes (see Section 1.3 in this document).

In a similar vein, we note that Maple variables offer greater utility than variables as
used in imperative programming languages. Algebraically speaking, a variable is simply an
unknown, whereas a variable in an imperative programming language is simply storage.
Inasmuch as Maple is a computer algebra system it provides both capabilities simulta-
neously; Maple variables may have values assigned to them, and at the same time any
unassigned variable is treated as an algebraic unknown. Additionally, a Maple variable
may store any valid Maple expression, further distinguishing them from the more usual
programming variables whose assigned values are often required to be of a pre-determined
type. In practice, these differences do not cause any problems either for students familiar
with programming, or those that aren’t. It is nonetheless a complication worth consider-
ing.

There was some question as to whether to introduce sums and products in this section
or in the next section. On the one hand, sums and products are quite elementary mathe-
matical objects from a first year calculus point of view. On the other, from the Maple point
of view sums and products are put together using the building blocks established earlier
in the section, and so are arguably not basic elements in their own right. Ultimately, sums
and products introduce notions of inert and active forms of mathematical objects, which
appear in several other commands later on when dealing with Calculus. As such, they
were kept in this section.

One of the insights from teaching the course is that much of the learning needs to be
“hands-on”. This is particularly true of the early introduction to the system, and thus
the goal of the very first subsection. Many stumbling points were remarkably difficult to
explain in prose and to demonstrate with static examples. Similarly, there were also some
technical points of Maple which were useful to know, but were really too obscure or tan-
gential to include in the main body of text. Such points were deemed better demonstrated
and introduced through exercises, rather than through prose.

A particularly illustrative example is Exercise 3(b), dealing with a peculiarity of the%
operator, which represents the value of the most recently completed computation. Most,
of the time this will be the result of the computation at the previous input block. However,
due to the dynamic nature of the Maple system, this could just as easily be a computation
sitting much earlier, or later in the worksheet file, which a user might have executed out
of sequence for any number of reasons. The experience of the author, both personally

1. NUMBER THEORY 9

as well as through teaching students, is that it is very easy to forget the out-of-sequence
nature of such an action, causing confusion when a command involving the % operator
gives unexpected results. Unfortunately, explaining this phenomena in prose proved to
be difficult, whereas having the students discover it themselves in a somewhat directed
exercise proved to be a much better approach. A thorough explanation of the intent of
each exercise can be found in Appendix A.

An important lesson discovered by teaching the course is that showing examples of
when and how commands can fail can sometimes be as important as showing when and how
commands work. This principle can be seen by its absence at the end of §1.1.4, on page 9.
A claim is made that the union and intersection keywords work as expected with sets,
but do not work at all with lists. The text shows an elementary union and intersection
of sets, but neglects to demonstrate the failure of the same commands with lists. The
oversight of this example before publication is unfortunate, however an example of such
failure conditions being demonstrated can be seen on page 10 (§1.1.6) demonstrating the
failure of the Reverse function in the absence of the appropriate package. Such examples
are used frequently when teaching the MATH2600 course.

Note that this concept need not apply only to a function or command failing outright.
In many cases throughout the text examples of a function or command providing unex-
pected or confusing answers can be seen, and are often used to explore the mathematics
of the example in question. No such examples are found in §1.1.1, however, due to the
introductory nature of the subsection. Examples from following sections of the text will
be highlighted and discussed below, as appropriate.

1.2. §1.2 “Putting It Together”. Once a familiarity with the Maple environment
and the basic “building blocks” of the Maple language are established, we begin to put
them together and show how Maple can be used to tackle more complicated mathematics.
The goal of this section is, as with the previous section, to introduce Maple concepts and
techniques. Specifically, the creation of functions, loops (for statements), decisions (if
statements), nested loops and decisions, recursive functions, and timing.

The more complicated nature of the techniques being shown lent themselves to demon-
stration with less contrived mathematics, as compared to those used in §1.1. The math-
ematical concepts were chosen specifically to demonstrate the Maple concepts and tech-
niques in question, in contrast to those used in the remainder of the text. However, even
with these examples we begin to see opportunities for learning new mathematics, or for
demonstrating related concepts which come up in the course of computation.

The computation of partial sums, for example, proved useful for introducing the cre-
ation of functions, as well as demonstrating the great utility of a function. Once the
partial sum function is created, the student can easily and quickly substitute values into
the partial sum formula to compute partial sums. The student may even use the function
as a variable storing the partial sum formula, as is seen in the first example on page 14.

The choice of partial sums, however, was primarily motivated by its utility in demon-
strating for loops. Numerically computing many partial sums, sequentially, and displaying

10 2. MAPLE

their values can give clues regarding its convergence (or divergence). Such a technique is
certainly not diagnostic, however. Nonetheless, it is a useful technique for introducing for
loops using mathematics from first-year calculus courses. This in turn allows us to intro-
duce or recall p-series, and demonstrate the difference in computation efficiency between∑∞
k=1 k

−2 and
∑∞
k=1 k

−π.
Additionally, the partial sum example allows the demonstration of a bug in Maple’s

infinite product evaluation. When Maple computes
∏∞
k=3 cos

(
π
k

)
it gives an answer of 0,

but the correct answer is actually an irrational number closer to 0.1149 (§1.2.1 pp18–21).
The demonstration of this bug leads to the introduction of a technique to convert between
infinite products and infinite sums, which many students have not seen prior to taking
this course. More importantly, perhaps, the example demonstrates that Maple can make
mistakes, and that one should keep their wits about them at all times. It also demonstrates
using multiple angles of inquiry to check results.

A satisfying example to illustrate the use of Maple’s if keyword was a little difficult to
find. After some trial and error, the example of divisors was decided upon. The example
of divisors is useful because it incorporates both loops and decisions, and demonstrates
how the two interact. The example also demonstrates the properties of divisors and how
they relate to the square root of a number, leading to a brief discussion of computational
efficiency. The reader sees the interaction between pen-and-paper mathematics with Maple
and how each can affect the other.

The discussion of divisors introduces a technique that is used several times later in the
text. The technique is to construct mathematics from first (or, at least, earlier) principles
before introducing a Maple command that will perform the calculation directly. This
technique is explicitly pointed out to the reader on page 24 of the text.

Furthermore, discussing divisors allows the text to move on to introducing and talking
about perfect, abundant, and deficient numbers. Identifying such numbers and classifying
numbers in this way neatly provides an example with which to show nesting of decisions.
In addition, the computations for these types of numbers are complicated enough that they
are not easily implemented as a function using the previously introduced arrow notation.
This difficulty is exploited to segue to the subsection on introduction procedures (§1.2.4)
while maintaining the narrative of the mathematical topic of perfect numbers.

The topic of recursive functions was added after the first iteration of teaching the
course. During that time, an iterative Fibonacci number calculator was written as part
of the introduction of procedures. The pseudocode for this procedure can be seen in
Algorithm 1. Although the code should be easy to understand for anybody familiar with
programming, in practice students tended to struggle to comprehend it.

The recursive procedures in §1.2.6 for calculating Fibonacci numbers were found to
be more easily understood by the students. Their advantages are that they are simpler,
easier to read and understand, and look more like the usual mathematical definition of
the Fibonacci numbers. The tradeoff for these benefits is either computational efficiency,
which leads to the discussion and measurement of execution times in §1.2.7, and the
subsequent introduction of the remember option for procedures.

1. NUMBER THEORY 11

Algorithm 1: Iterative implementation of the Fibonacci number calculator.
Input: N ∈ N
begin

fn−1 ← 1
fn ← 1
for k ← 3 to N do

temp ← fn + fn−1
fn−1 ← fn
fn ← temp

end
return fn

end

Recursive functions combined with the remember option introduces another limita-
tion which is difficult to explain at a level accessible to the intended reader of the texts.
In order to avoid unterminated loops appearing as part of an infinite backwards recursion
(from, say, neglecting to specify an initial condition), Maple limits the number of recursive
calls which can happen before it cancels the computation and issues an error. This is the
limitation referred to at the bottom of page 36 in §1.2.7. It proved impossible to find an
argument to the f function that took approximately a second to compute, as computing
more than the 2000th Fibonacci number resulted in too many recursions.2

Trial-and-error is quite difficult with this function as well, because every execution
causes function values to be remembered, which affects the computation times of later
computations (e.g., the time to compute f(4000) after having only computed f(2000), as
seen on page 40). Furthermore, the remembered values also allow for larger arguments
to be computed before the recursion limit is reached. For instance, the aforementioned
computation of f(4000) would have been impossible without the prior computation of
f(2000). This forces constant re-setting of the function, in order to properly ascertain
execution times, and where the number of recursions exceeded Maple’s limit. Such trial
and error is easy to show and explain in person, but proved sufficiently difficult in prose
as to be avoided in the main text. Instead, Exercise 19 was constructed to demonstrate
the problem.

1.3. §1.3 “Enough Code Already. Show Me Some Math!”. With this section,
the text finally dispenses with introducing Maple concepts for their own sake and begins
exploring mathematical concepts. There are a mix of topics, some of which are familiar
from first year discrete mathematics (induction and recurrence relations), and others of
which introduce new, but accessible, concepts (continued fractions and the Sieve of Er-
atosthenes). For the most part the author feels the subsections speak for themselves, and
consequently we discuss only technical and teaching points.

2Specifically, when executed immediately after a fresh definition of the function, f(2934) may be computed,
whereas f(2935) will cause a “too many levels of recursion” error. This is on Maple 15 on the author’s
home computer. Maple 16 on the author’s office computer appears to allow more recursions, exhibiting
the same behaviour for f(11000) and f(12000) respectively.

12 2. MAPLE

Continued fractions, while quite simple, can be tedious and time consuming to compute
by hand. Using Maple allows the construction of a continued fraction to be explored using
basic mathematical principles of what a continued fraction is, combined with the loop
structure of the Maple language which was introduced earlier in the chapter. The choice
of a finite decimal to begin with (0.123456789) permits an easy check of the resulting
continued fraction by simply typing the fraction into Maple and seeing that it is reduced
to 123456789/1000000000. The “pretty-printing” nature of Maple’s worksheets means that
the students can also see the continued fraction printed in all its glory. Regrettably, this
simple check did not make it into the text, although it has become a standard part of the
lecture when teaching the subject face-to-face.

Such checking, based on early principles, has become a staple of the face-to-face teach-
ing and testing of the course. Students are routinely asked questions (usually recurrence
relations or differential equations) which they are almost certainly incapable of solving
by hand, but for which Maple’s inbuilt functions can provide a solution. It is expected
(and, during lectures, demonstrated) that the student can verify the solution by simply
substituting it back into the original formula and checking the truth of the result.

The Sieve of Eratosthenes was chosen partly because of its simple elegance and partly
because the implementation demonstrated in the text contains a nifty computational idea:
an array of boolean values wherein the index to the array as information. If the boolean
value at address n of the array is true, then the number n is prime (and, conversely, if the
value is false, then n is not prime). The implementation is very much the sort that a C or
C++ programmer would use, and in practice some students struggled to understand its
technicalities. Note that if a list is used instead of an Array, then Maple issues an error
about assigning values to long lists and requires the use of an Array; regrettably this was
not mentioned in the prose.

We note that the need for an alternative impelementation of the Sieve of Eratosthenes
for the Mathematica text (see Section 1) led to finding a simpler implementation (and a
superior one, in the opinion of the author) that has since been taught in the face-to-face
course. The new implementation uses set manipulation, removing multiples of a newly
found prime via the set minus operation. Some technicalities can still crop up with this
implementation, such as keeping track of what the “next” uncrossed out number is, but in
practice the set-based implementation is shorter, easier to read, easier to understand, and,
surprisingly, faster in execution. Perhaps more importantly, it allows the student to think
more like a mathematician, and less like a programmer, which in practice is beneficial for
many students.

This demonstrates a certain dichotomy of thinking with regards to using Maple: math-
ematical vs programatic. Inasmuch as the background of the author before studying math-
ematics included work as a computer programmer, many of the Maple examples used for
the first iteration of course notes tended to use techniques similar to those employed in
programming languages such as C, C++, or Java. Such techniques proved difficult for
less technically capable students. We have found that a strong advantage of Maple (or
Mathematica) as a system for performing mathematics is that its inherent mathematical

2. CALCULUS 13

nature allows mathematically-minded people who might otherwise struggle with the deep
technicalities of programming to nonetheless use a computer as a tool of mathematics. As
such, examples in the texts have progressively moved away from such programatic think-
ing toward a more mathematical thinking, and we note that this trend has continued in
lectures after the publication of the texts.

2. Calculus

For the most part, the Calculus chapter of the text looks at calculus topics at a level
which ought to be familiar to the student from first year. We do so for two reasons. Firstly,
some students taking the course have only marginally passed the assumed knowledge from
first-year calculus and revising this material with the added benefit of having the software
to help with computations should reinforce comprehension. Secondly, students who are
strong in the assumed knowledge stand to benefit from new perspectives on the familiar
material made possible by the use of Maple for demonstration and exploration. In both
cases, the aid of the computer allows the student to approach more difficult or complicated
problems than they could previously have done by hand.

The chapter is divided into three sections. The first covers calculus from first principles
and introduces Maple commands for dealing with limits, integrals, derivatives, and the
visualisation functions whose domain and ranges are real. The second covers applications
of univariate calculus. The third covers elementary multivariate calculus, and is new
material for some students who take the course. In practice, the entirety of the chapter
is significantly more than can be covered in the three or four lectures devoted to teaching
the Calculus portion of the course.

We note the following items of particular interest relating to the content of the chapter
and its development. It is assumed that the text otherwise speaks for itself.

Visualisation is an incredibly useful tool in calculus. As such, §2.1.1 and §2.1.2 are
devoted solely to introducing Maple’s plot function and its vagaries. Note that §2.1.1 is in
the same style as §1.1 and §1.2 in that the goal is to introduce Maple code, however §2.1.2
introduces its concepts through an inequality problem which would likely be inaccessible
to the target audience without the aid of visualisation.

When introducing differentiation from first principles, the text constructs a procedure
that prints the limit in inert form, as well as the value of the limit. Using this function
to compute the derivative of sin x at x = π/2 outputs the limit (cosh − 1)/h which has
a 0/0 form, yet converges to 0 as h → 0. In lectures, a similar but extended approach is
sometimes taken, where the derivative of sin is explored through first principles, resulting
in the limit

sin(x) lim
h→0

(cos(h)− 1
h

)
+ cos(x) lim

h→0

(sin(h)
h

)
thus reducing the derivative of sin to the limit of sin(h)/h as h→ 0 (since (cos(h)− 1)/h
can be manipulated into an expression involving sin(h)/h). The proof of the value of
the limit hinges on the fact that cos(θ) ≤ sin(θ)/θ ≤ 1 for 0 ≤ θ ≤ π/2, which can be

14 2. MAPLE

nicely visualised using techniques similar to those in §2.1.2. Visualising this inequality
also provides a nice demonstration of the squeeze principle.

The “flower plot” on page 102 (§2.2.5) lends itself very nicely to an animated plot, to
better explain the cyclic nature of the function being plotted. Regrettably, such dynamic
visualisation does not work particularly well when printed in a book. The plot is shown in
lectures, when the extra plotting material is covered. Additionally, animations of Taylor
series of increasing degree are also shown (along with the original function) to demonstrate
Taylor approximations, which is a topic not covered in the texts at all.

The visualisations of surfaces and volumes of rotation produced on pages 109 and 110
(§2.3.2) were directly motivated by a mistake made by the author during the first draft
of the notes. After converting the function x = z2 to z =

√
x, the author lost track

of which area was being rotated to create the volume, and thus inadvertently computed
the area between the curve and the z-axis (instead of the area between the curve and
the line z = 2). To compound matters, the error did not show up when checking the
value computed against the “shells” method of computing the volume because of a curious
property of the paraboloid, where the volume obtained by rotating the area between the
curve and the z-axis around the z-axis happens to be exactly the same as the volume
obtained by rotating the area between the curve and the x-axis around the z-axis. This
led directly to the visualisation on pages 109 and 110, as well as to Exercise 11(a).

3. Linear Algebra

The Linear Algebra chapter follows a traditional treatment on the topic. We assume
no prior exposure to vector spaces, however, we do assume that the student has seen
introductory vectors (usually Rn) along with elementary vector arithmetic and the dot
product. It is also assumed that the students have seen matrices before and know how
to multiply them (and, consequently, how to multiply a vector and a matrix together).
These topics are all covered in first year calculus courses at the University of Newcastle,
without the framework of vector spaces.

The first section (§3.1) reviews this assumed material, beginning by showing how com-
mon vector and matrix arithmetic procedures are performed in Maple, and then following
up the usual treatment with the added aid of visualisation. A student’s understanding of
planes, in particular, benefits greatly from visualisation, as there are many configurations
of simultaneous planes that can be difficult for beginning students to conceive of initially.
For example, the case where three or more planes intersect at only a single point, or the
case where two or more planes fail to have any points in common. Only one such example
is given in the text, although Exercise 3 (p180) demonstrates some other configurations.

An unusual aspect of the first-year linear algebra review in is found in §3.1.3, where
elementary matrices are introduced and used to prove that row reduction can be used to
find matrix inverses. The technique of finding the inverse of a square matrix M by row-
reducing an augmented matrix [M |I] (where I is the identity matrix) is taught in first
year at the University of Newcastle, however a proof of the correctness of the technique
(or explanation as to why it works) is never taught in fist year and is rarely taught in the

4. VISUALISATION AND GEOMETRY 15

second year Linear Algebra course.3 The proof is relatively simple, and the use of Maple
significantly helps in demonstrating the techniques involved which are onerous and error
prone if performed by hand due to of the large number of matrix multiplications involved.

The remainder of the chapter (§3.2 and §3.3) follows a standard introduction to Lin-
ear Algebra and covers: the introduction of vector spaces, linear combinations, linear
dependence, basis and dimension, linear transformations, matrix representation of linear
transformations, eigenvectors and eigenvalues, and diagonalisation. The choice of topics
and the breakdown of the two subsections were due to the time constraints of lecturing
(approximately one lecture per chapter), although in practice the material presented tends
to require more time. Since the goal of the course as a whole is to introduce students to
computer assisted mathematics, the lectures on this topic finish at whatever topic is ar-
rived at after three for four weeks of lecturing, with little concern as to whether some
topics were missed.

Of particular note is the tendency in both the text and the lectures to show examples
of the linear algebra concepts in vector spaces other than Rn. Polynomial spaces (Pn(R)
or Pn(C)) are predominantly used, and matrix spaces are left as challenging exercises. All
of linear combinations, dependence, basis, dimension and even linear transformations and
matrix representation of linear transformations are demonstrated on polynomial spaces.
The demonstration is little more than exploiting the fact that every finite-dimensional
vector space over a field F is isomorphic to Fn for some n, which is the essence of performing
linear algebra in Maple. The demonstration is aided by the fact that most of these concepts
come down to solving a linear system, and Maple allows for quick and easy solution of
linear systems, as well as quick and easy transformation between the vectors in question
and their isomorphic images in Fn.

The notion of isomorphism is not directly addressed in the text. Instead, the isomor-
phism between Pn(F) and Fn is initially described as a “correspondence” (p149) with the
isomorphism itself described explicitly in terms of the coefficients of the polynomials and
the components of the vectors. After the concept of vector bases is introduced, this corre-
spondence is explained as one between basis vectors, allowing for an analogous procedure
to be performed between any finite-dimensional vector space and Rn for appropriate n.
Nonetheless, the omission of directly talking about isomorphisms between spaces is an
oversight which ought to be corrected should a second edition ever be produced.

4. Visualisation and Geometry

The Visualisation and Geometry chapter forms a postscript to the text. At the time
of writing the initial course notes, members of the CARMA research group at the Univer-
sity of Newcastle, including Professor Jon Borwein, were using the Cinderella interactive
geometry package for some of their research. Inasmuch as Cinderella is designed for more
elementary geometry, its utility for research in optimisation is remarkable. Consequently,
it was used when teaching the course, both to introduce the software and to highlight the
benefits of interactive computation.
3At least, this was the case at the time of writing the first round of course notes.

16 2. MAPLE

Regrettably, the interactive nature of the software lent itself more to demonstration
and direct experience than it did to explanation in prose. As such, the Visualisation
and Geometry chapter was co-opted to introduce some plotting and visualisation tools
that didn’t come up directly in the mathematical exploration of the text but which were
nonetheless useful. Additionally, we demonstrated some geometric constructions using
Maple’s inbuilt geometry package which, despite not being interactive, was much better
suited to explanation and demonstration in prose.

CHAPTER 3

Mathematica

When the project was extended to include Mathematica a new set of issues surfaced.
It was originally envisaged that the process of converting the Maple text to Mathematica
would—more or less—be a simple case of applying the techniques from the original text
in Mathematica, replacing the Maple examples in the text with the requisite Mathematica
code, and replacing occurrences of the word “Maple” with “Mathematica”. It was un-
derstood that some of the explanatory paragraphs would need to be modified in some,
presumably small, ways.

It turned out, however, that the differences between the two systems were great enough
that many otherwise apparently basic techniques needed remarkably different approaches,
and consequently different explanations. Although the same structure and material was
kept, large amounts of the first chapter needed to be re-evaluated and re-written, as well
as smaller—but still significant—parts of later chapters.

We discuss those issues here, chapter by chapter, and note the requisite changes made
to address them. The reader may assume that the desires and motivations described for
the Maple text remain. Note that much of the work was spent in ascertaining how to
perform operations in Mathematica and then in re-crafting the explanation required in
the text. As such, while the content is not radically different, much time was spent in
re-crafting it.

An immediate difference between the two systems is in their “pretty-printing”. Recall
that the decision to use the Maple so-called “2D input” mode was (in addition to it being
the default on Maple version 10 and onward) in order to have the maths on the computer
screen look as similar as possible to mathematics as it is written on paper. This is more
difficult with Mathematica; its output is pretty-printed, but the commands the user inputs
tend to be purely textual. It is possible to have the inputs pretty-printed, however, to do
so is tedious. In contrast to Maple’s method of 2D input, Mathematica requires the use of
ctrl-6, ctrl--1 to produce typeset superscripts and subscripts, and the use of ctrl-/ to
produce typeset fractions. Regrettably, the author has only become aware of this facility
after the publication of the text.

Other characters, such as union (∪), intersection (∩), greek letters, and others, require
escape sequences to be typed in by first pressing the esc character, followed by a sequence
of characters (usually an abbreviated form of the name of the symbol to be input, or its
mathematical meaning), followed by the esc key again. For example, the union symbol is
achieved by typing esc, u, n, esc, and the λ greek letter is achieved by typing esc, l, a,

1That is, the control and hyphen (or dash) keys pressed simultaneously.

17

18 3. MATHEMATICA

m, b, d, a, esc. Alternatively, the backslash notation may be used for similar effect, such
as \[Theta], as shown in §4.1.3 (similarly, λ can be achieved with \[Lambda]).

It was decided that these pretty-printing options were sufficiently convoluted to explain
in prose to be worth avoiding. Instead, the input was kept as text input. This is perhaps
most noticeable in the Calculus chapter, which contains many polynomials and rational
functions.

1. Number Theory

The Number Theory chapter required the most effort to re-work into appropriate
Mathematica code and related explanation. This should not be surprising, given that this
is the chapter in which the most time is spent the most time introducing the system for
the first time.

The first point of difference is in the way Mathematica handles lists and sets. In
Maple the system distinguishes sequences, lists, and sets as different data types. In Math-
ematica the system has only the lists data type, however lists may be treated as sets
using appropriate functions (Union, Intersection, etc). This proved to be a little jarring
when learning Mathematica while being accustomed to Maple; this is likely lessened when
learning Mathematica as one’s first mathematical package. Additionally, the use of the
Complement function to perform what is essentially a set minus operation is a somewhat
unexpected choice, as is discussed on page 10.

Note that Mathematica does not have alternate “inert” and “active” forms for its
sums and products (or anything else for that matter) as Maple does. One may achieve a
pretty-printed unevaluated mathematical expression using a combination of the HoldForm
and TraditionalForm functions. The Hold function is used to prevent Mathematica from
evaluating an expression, and the ReleaseHold function will undo a hold on an expression
(i.e., ReleaseHold will cause a held expression to evaluate). However, an expression
<expr> when applied as an argument to the Hold function will output as “Hold[<expr>]”,
whereas the output of the same expression as an argument to the HoldForm function is
simply the unevaluated expression. Pretty-printing is only applied to the output in some
cases, but the effect can be achieved with the TraditionalForm function when needed.
These functions, while useful, were deemed to be too troublesome to use routinely for the
purposes of the material being covered in the text. The functions are mentioned in passing
in a couple of locations (pages 56 and 85) and were left to the interested reader to pursue
further.

The next point of difference is that Mathematica allows for prefix, infix, and postfix
notations for function calls (see §1.1.6). These alternate notations could have been omitted
entirely and the text likely would not have suffered, especially when we consider that Maple
uses none of these functional notations. However, we found that judicious use of these
notations helped to make code more readable, and so we introduced them.

Function creation in Mathematica uses pattern matching, which is more generally
powerful than the creation of functions in the sense explored in §1.2.1. The concept of
pattern matching is expanded upon in §1.2.2 and §1.2.3, and briefly in §1.2.7. It should

1. NUMBER THEORY 19

be noted that the text does not use the full extent of Mathematica’s capability for pattern
matching.

Note also that Mathematica includes what it refers to as “pure functions”, defined
using either the & operator or the Function function. Pure functions are conceptually
similar to Maple’s arrow function notation (as introduced in §1.2.1 in the Maple text) in
that they may be used to specify a function in-line without having to assign it to a variable
name first. Such a technique is used very infrequently in the Maple text (see §2.1.4, §2.1.5,
and §3.1.1). In the author’s opinion, pure functions were sufficiently confusing to avoid in
favour of the pattern matching technique (which also opened the way to further explore
pattern matching in later subsections). This led directly to the changes in §1.2.4 from the
discussion on Maple procedures in the original text to a more pattern-focussed discussion
in the Mathematica text.

A discrepancy in the way Maple and Mathematica compute certain p-series forced
the removal of an example from the text. Mathematica’s calculation of the partial sums∑N
k=1 1/k2 evaluate only to rational numbers (see §1.2.1). In the Maple text, the 10,000th

partial sum is computed as −Ψ(1, 10001) + π2/6, however Mathematica will compute the
same partial sum a fraction whose numerator and denominator each contain 8693 digits.2

Furthermore, Mathematica doesn’t have as nice a formula for the Nth partial sum as
Maple does (we see this in §1.2.2). The discrepancy essentially invalidated the exploration
of
∑∞
k=1 1/kπ in the Mathematica text because the partial sums of the two p-series take

approximately the same amount of time to compute in Mathematica. This is not the case
in Maple; in fact the difference in computation times is precisely the reason for exploring
the second sum in the Maple text. Consequently the

∑
k−π exploration was omitted from

the Mathematica text.
In §1.2.1, the exploration of the computation of

∏∞
k=3 cos

(
π
k

)
was removed because

Mathematica did not produce the same erroneous value of 0 that Maple computed. In
the Maple text, this mistake serves three purposes: 1) as a reminder that the computer is
not infallible, 2) as a demonstration of multiple avenues of exploration and checking, and
3) as a convenient excuse to introduce the idea of converting between sums and products
using logarithms and exponentials. Regrettably, attempts to frame these points in the
Mathematica text felt contrived without the motivating computational mistake, and so
the example was dropped.

Note also that Mathematica’s For loops are significantly different to Maple’s. The
Mathematica For loop would be familiar to a C (or C++) programmer and consists of
initialisation, test, and incrementation code appearing before the code block that is to be
executed by the loop. It was decided that this was probably too technical to introduce
to readers at the level expected by the text. Fortunately, Mathematica’s Do and While
loops were much more straightforward and used the familiar iterator syntax introduced
in §1.1.4 and §1.1.5. Furthermore, these loops were conceptually similar to those seen in
Maple. Consequently, the Do and While commands were used instead of the For command
because they required less rewriting and re-explaining. We note that in all cases the loops
2This computation was not included in the text due to the fraction being too large to print.

20 3. MATHEMATICA

(and decisions as well) in Mathematica are all functions, as opposed to Maple where loops
and decisions are part of the syntax of the language.

There is a bug that arises with recursive functions in the event that $RecursionLimit
is set too high and this caused some problems with the exploration of Fibonacci number
computation times in §1.2.7. We were able to cover sufficient material in the section that
we did not need to change the content at all, and simply reported the bug (see page 48).
We note here that the bug is still apparently present in Mathematica version 9.0.1.0.3

The final significant point of difference in Chapter 1 was to do with the Sieve of
Eratosthenes. The implementation used in the Maple text was exceptionally difficult to
achieve in Mathematica. Lists cannot easily be modified in place like a Maple array can.
Furthermore, despite many of Mathematica’s idiosyncrasies being similar to those of a
language such as C or C++, it apparently lacks anything like a C array (to which a Maple
Array behaves similarly). As such a different implementation was required. During the
early stages of converting the Maple code to Mathematica code, a visiting undergraduate
research fellow from the California Institute of Technology, Joshua Borwein, experimented
with a recursive implementation that also used sets. Ultimately this implementation
proved to be too cumbersome and confusing for the target audience, but the idea of
leveraging sets (instead of lists) led the author to the implementation that was ultimately
adopted. The set-based implementation also proved to be effective in Maple, as discussed
in Section 1.3 above.

2. Calculus

With the introduction to Mathematica out of the way, fewer changes were required
to be made to the content of the text. For the most part, the exercises were able to
stay the same and it only remained to find analogous Mathematica code to perform the
steps performed in Maple in the original text. We note the following additional points of
interest.

Mathematica’s plotting of trigonometric functions was better behaved than Maple’s.
Specifically, the plot of the tan function in §2.1.1 (p79) did not produce the same erroneous
plot that appears in the Maple text in the same section (p69). We were able to replicate
the incorrect plot in Mathematica with the use of the PlotRange->Full option to the
Plot function. Doing so introduces the PlotRange option and also allows the discussion
of the vertical axis scale. We note, however, that it is a little less satisfying to start with a
working function and have to break it in order to introduce discussion, than it is to start
with a broken function and discuss how to fix it. Interestingly enough Version 16 and later
of Maple no longer produce the erroneous plot (and, in general, these versions are better
at choosing vertical ranges automatically).

The lack of a convenient “inert” form for mathematical objects (as discussed above)
caused some problems. In §2.1.3 we briefly show the reader how to print the limit in
traditional mathematical notation and explain that we will avoid the technique. A more
significant problem lies in the treatment of symbolic manipulation of integrals, as discussed
3The Mathematica version used during the writing of the text was version 8.

4. VISUALISATION AND GEOMETRY 21

in §2.2.3 of the Maple text. We were forced to abandon the entire sub-section for the
Mathematica text.

We also note that Mathematica lacks a command analogous to Maple’s identify func-
tion. As such, the discussion at the end of §2.2.2 dealing with the erroneous identification
of 16.37297620 (the computed value of

∫∞
0 x2/

√
ex − 1 dx) as (9/2)23/5√3ζ(5)9 was, sadly,

reduced to a paragraph describing in prose the results of the exploration conducted in the
Maple text.

We also note that the integral
∫∞

0 x2/
√
ex − 1 dx was able to be evaluated directly

by Mathematica, whereas Maple (as of version 16) remains unable to evaluate it with-
out the substitution given in the text. The corresponding substitution feels weak in the
Mathematica text, as it was not needed to evaluate the integral. We note that this was
a common theme with Mathematica; it tended not to make mistakes similar to the ones
Maple made that we were able to exploit for teaching purposes. Mathematica’s quirks and
shortcomings tended to be very technical, to be hidden from the user, or to be esoteric
mathematically.

3. Linear Algebra

The Linear Algebra chapter required the fewest changes to be made. The only signif-
icant point of divergence from the Maple text is the fact that Mathematica does not have
inbuilt matrix or vector types, instead it simply uses lists in particular configurations. A
result of this is that it does not automatically print matrices and vectors in a mathematical
(read: pretty-printed) manner. Pretty-printing is achieved via the MatrixForm function
for both matrices and vectors, however, once a vector or matrix is pretty-printed in this
way, Mathematica no longer recognises it as a list (and consequently as a matrix or vector).
As such, pains needed to be taken to make sure that pretty-printing intermediate results
didn’t interfere with computations. In practice this wasn’t difficult.

This technicality did, however, allow a reasonably easy way to output an unevaluated
matrix multiplication. Such a technique is useful during lectures to show students, on
screen, the matrices to be multiplied, and to aid in checking simpler results manually.
We see an example of this in §3.1.1 (pp141–142). With Maple, the author usually uses a
sequence to achieve a similar result.

4. Visualisation and Geometry

The Visualisation and Geometry postscript chapter required significant rewriting. It
was decided that mention should be given to Mathematica’s demonstrations library and
also to Mathematica’s interactive capabilities. However, due to the limitations of explain-
ing and demonstrating interactive elements in static prose, this amounted to a paragraph’s
mention each, containing information for where the interested reader should go to further
pursue the topics. Additionally, a brief demonstration of animation was added. The
remainder of §4.1 was essentially unchanged.

A significant difference stems from the fact that Mathematica lacks any sort of geomet-
ric package similar to that used in §4.2 of the Maple text. Despite the above difficulties,

22 3. MATHEMATICA

It was decided that the interactive geometry package Cinderella should be introduced and
used. This was achieved by giving the interactive nature of the software a description in
the introductory paragraphs of §3.2, along with the limiting factor of explanation in prose.
The constructions were then described with accompanying images generated in Cinderella
in place of the Maple code that was present in the Maple text.

CHAPTER 4

Epilogue

In summary, we have produced a course and texts teaching introductory computer-
assisted mathematics and computational mathematics in which the primary focus is on
the mathematics with the tool in question (Maple or Mathematica) acting as more of a
means to an end. It is hoped that upon completion of the course or one of the texts,
the student or the reader is able to apply principles of learning and exploration to other
mathematical concepts and computational tools.

We close by noting that the course continues to be taught and continues to evolve.
Students invariably end up showing the author something new; sometimes directly and
sometimes indirectly. Furthermore, the author uses these tools in his other research. Both
situations lead to learning new techniques or subtleties of the systems, some of which make
their way into lectures.

Nonetheless, the topics and techniques published in the texts remain a stable, solid
foundation with which to teach the course. This is in no small way due to the iterative
nature of teaching the course and writing the material. Currently, the author requires
students to read relevant sections in their own time and gives lectures on complementary
material. The complementary material is either clarification of students’ misunderstand-
ings, greater depth and detail regarding the material in the relevant section, or covers a
topic of mathematics related to the material in the relevant section. Student feedback has
been uniformly positive.

23

References

[1] Aratyn, H., and Rasinariu, C. A Short Course in Mathematical Methods with Maple. World Sci-
entific, 2006.

[2] Bailey, D., Borwein, J., Calkin, N., Girgensohn, R., Luke, R., and Moll, V. Experimental
Mathematics in Action, 1st ed. AK Peters, Wellesley, MA, 2007.

[3] Borwein, J., and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century,
2nd ed. AK Peters, Wellesley, MA, 2008.

[4] Borwein, J., Bailey, D., and Girgensohn, R. Experimentation in Mathematics: Computational
Paths to Discovery, 1st ed. AK Peters, Natick, MA, 2004.

[5] Borwein, J., and Devlin, K. The Computer as Crucible: An Introduction to Experimental Mathe-
matics. AK Peters, Wellesley, MA, 2009.

[6] Gander, W., and Hřebíček, J. Solving Problems in Scientific Computing Using Maple and MAT-
LAB, 4th ed. Springer, New York, 2008.

[7] Garvan, F. The Maple 5 Primer Rel 4. Prentice Hall, Englewood Cliffs, NJ, 1997.
[8] Garvan, F. The Maple Book. Chapman and Hall/CRC, Boca Raton, FL, 2001.
[9] Gray, T. W., and Glynn, J. Exploring mathematics with Mathematica. Addison-Wesley, 1991.

[10] Heck, A. Introduction to Maple, 3rd ed. Springer, New York, 2003.
[11] Rovenski, V. Y. Geometry of Curves and Surfaces with MAPLE. Springer, New York, 2000.
[12] Wagon, S. Mathematica in Action, 2nd ed. Springer, New York, 1999.

25

APPENDIX A

Exercise Guide

Included here is a Lecturers guide to the exercises for “An Introduction to Modern
Mathematical Computing with Maple” and “An Introduction to Modern Mathematical
Computing with Mathematica”. The guide is current as of the date of printing of this
document. An updated guide (if there is one) can be found at http://carma.newcastle.
edu.au/books/mathematicalcomputing/.

An Introduction to Modern Mathematical Computing with Maple

This document is intended to act as a guide to the exercises in the book “An Intro-
duction to Modern Mathematical Computing with Maple”. It is primarily intended for
instructors, lecturers, tutors or the like, and outlines the intent of the exercises, as well
as any technical points, stumbling blocks, or other significant point the student or reader
might miss. Students should feel free to read the contents of this document, but should
be warned that the material is aimed at a higher level than the books are aimed at.

For the duration of this document we will refer to the person attempting the exercises
as the student, although we acknowledge that not everybody attempting the exercises
from the text will necessarily be a student. The book itself, and the exercises therein, was
primarily written as a text to accompany a second year university course, and as such the
exercises were written with teaching students in mind.

Number Theory.

(1) The goal of this exercise is to give students practice in entering basic expressions
into Maple, as well as in using the evalf function. Note that part (h.) may
potentially lead to a discussion as to the precedence of taking powers. That is

22222

= 2

2

(
2(22)

)
6=
(((

22
)2
)2
)2

= 22·2·2·2

Furthermore, Maple gives an exact integer answer (albeit with some 19,500 odd
digits removed), but rounds rounds the floating point approximation to 10 sig-
nificant figures (or however many significant figures the student specifies).

(2) This exercise is to show the student how Maple (and, specifically, the evalf func-
tion) handles digit precision of decimal approximations. Note that parts (a.)
through (d.) are meant to be demonstrative, and should give the user clues
about how to solve parts (f.) through (h.).

27

http://carma.newcastle.edu.au/books/mathematicalcomputing/
http://carma.newcastle.edu.au/books/mathematicalcomputing/

28 A. EXERCISE GUIDE

Also, note that setting the Digits variable changes the precision of the entire
worksheet, whereas specifying the precision directly in the evalf function only
changes the precision for that particular calculation.

(3) This exercise demonstrates two possible stumbling blocks. Firstly (part (a.)) that
some variable names are protected in Maple. Common names the students will
likely end up wanting to use themselves will be I (the imaginary unit) and D (the
differential operator). This exercise should introduce the idea that some variable
names are already taken, and can’t be used.

Note that Maple provides the capability to remove or grant protection via
the unprotect and protect functions respectively. Doing so should not be nec-
essary in the context of the book, or its exercises, and so these functions are not
mentioned at all there.

Secondly, (part (b.)), demonstrates a common misunderstanding with the %
operator. Specifically, the % operator represents the result of the most recently
performed computation. This exercise demonstrates that the most recently per-
formed computation is not necessarily the computation on the previous line of
the workbook.

(4) This exercise is to show the student some of the possible capabilities of the the
convert function.). Note that parts (a.) through (h.) are meant to be demon-
strative, and should give the user clues about how to solve parts (g.) through
(k.). The reader should also need to search through Maple’s help files to solve
some, or all, of parts (g.) through (k.).

Also, note that part (k.) includes a possible stumbling block if the user forgets
to explicitly specify that the terms in the denominator are multiplied (either by
using , or a space). That is, Maple treats (x− 1)(x2 + 2)2 and (x− 1) · (x2 − 2)2

differently (the latter has a dot between the parenthesised expressions). The
reader should be three expecting fractions with denominators (x − 1), (x2 + 2),
and (x2 + s)2. However, if they forget to explicitly specify multiplication, they
instead get a single fraction with denominator (x(x2 + 2) + 1)2.

The reason for this discrepancy is that Maple interprets (x−1)(x2 +2) as the
function (x − 1) applied to an argument of x2 + 2), where the function (x − 1)
is the function obtained by pointless subtraction of the constant function 1 from
the function x. If we call this function g (i.e., g := x− 1), then (x− 1)(x2 + 2) =
g(x2 + 2) and so

(x− 1)(x2 + 2)2 = g(x2 + 2)2

= (x(x2 + 2)− 1(x2 + 2))2

= (x(x2 + 2)− 1)2

which explains the seemingly strange denominator.
(5) This exercise demonstrates how the $ operator may be used as a shorthand for

the seq function. Note that the $ operator is strictly less powerful than the
seq function, and the author recommends the use of seq. For example, the

AN INTRODUCTION TO MODERN MATHEMATICAL COMPUTING WITH Maple 29

sequence produced by seq
(

2
n , k in [2, 3, 5, 7, 11, 12]

)
cannot be produced using the

$ operator (see Exercise 6).
(6) This exercise is to show the student some of the more technical capabilities re-

garding dummy variables in the seq function. Note that parts (a.) through (d.)
are meant to be demonstrative, and should give the student clues about how to
solve parts (e.) and (f.).

Note that the intent for part (f.) was to have the student to solve the exer-
cise using a list inside the seq function (i.e., with seq

(
1
k , k in[1, 2, 4, 7, 11, 16]

)
or

something similar). Some students notice that the denominators exhibit a pat-
tern where first 1 is added, then 2, then 3, and so on. Some careful mathematics
should show that the kth term of this sequence is 1 + n (n−1)

2 and so the problem
may be solved by seq

(
2

k2−k+2 , k = 1..6
)
.

(7) This exercise is to show the student how a sequence, list, or set may be indexed in
reverse. Note that the failures are produced because the ranges are backwards.
For example, part (g.) is equivalent to asking for L[10..8], which is not a valid
range because the left hand side is larger than the right hand side.

(8) This exercise is to demonstrate the op, nops, and numboccur functions, as well
as theOccurrences function from the ListTools package. The student is expected
to look at the help information for the Occurrences function themselves, and
use that information to work out how to solve parts (m.) through (p.)

Note that Maple stores expressions as an expression tree, where the internal
vertices are operations, and the children are the arguments to that operation.
The op command returns the immediate children of the root of the tree, as a
sequence, and the nops command returns the number of said children. The
numboccur function is a little different; it returns the number of occurrences of
an expression (the second argument) in the entire tree; this is demonstrated in the
second part of the exercise, with the nested list. Conversely, the Occurrences
function counts the occurrences of the expression (its first argument) in the first
level of the list (the second argument) only.

In the case of lists, it is expected that students wanting to know how many
times a particular element of the list occurs, they will only want to consider the
first level of lists, and as such Occurrences exhibits the correct behaviour, and
numboccur does not. However, op, nops, and numboccur are applicable to
any expression, where Occurrences only operates on lists.

A stumbling block to note is the following. If a list is given to numboccur
as the sub-expression to count, then numboccur will count the occurrences of
each individual element of that list, and will return the sum of those counts. For
example, numboccur(E, [s1 , s2]) will count the number of occurrences of s1 in
expression E, as well as the number of occurrences of s2 in expression E, and
will add the two counts together for the final result. To have numboccur count
the number of occurrences of a sub-expression which is, itself, a list, then that

30 A. EXERCISE GUIDE

list must be put inside a list. For example, numboccur(E, [[s1 , s2]]) will count
the number of occurrences of the list [s1 , s2] inside the expression E.

(9) This exercise is a challenge. The student will need to use the help files, and some
trial and error to work out how the given convert command variant works. Then
some insight, and some more trial and error will be needed to work out how to
convert the required digits of π into an integer for use with the convert function.

Note that this exercise is related to the further exploration of normal numbers
(§1.5, p65).

(10) This exercise is to give the student practice at computing sums and products,
as well as converting between mathematical notation of sums and products, and
Maple code. Parts (e.) and (f.) are familiar taylor series that the student
should recognise from first year mathematics, and which Maple should imme-
diately recognise and simplify. Parts (g.) through (h.) require the student to
interpret the ellipsis notation.
Typo: in parts (e.) and (f.) the dummy variable printed on the big sigma should
be n, but is printed as k.

(11) This exercise is part practice with function creation, and part binomial experi-
mentation. Note that the student will need to use Maple’s help files to find the
function that computes the binomial coefficients.

Note that the answer to part (d.) will differ based on whether the students
use the inbuilt function, or write their own. In the former case the result will be
(x/y + 1)N yN , and in the latter it will merely be (x+ y)N . It is for this reason
that the student is instructed to perform the tasks twice. Some thought as to
why these are equivalent might be needed by the student.
Typo: Part the first sentence of part (d.) should read Ask Maple to evaluate
g(N). (The function should he g, instead of f).

(12) This exercise is intended to give the student a mathematical definition (or con-
cept) they have likely not seen before, and leads them through an exploration
of the concept. Note that the student is expected to extrapolate the meaning of
hexagonal numbers from the explanation of triangular, square, and pentagonal
numbers given.

(13) This exercise is to show the student a stumbling block with dummy variables
in the sum function. Note that the dummy variables are in the sum and Sum
functions appear to be in the global scope. That is, they do not appear isolated
within the function itself. As such, the commands become confused if their
dummy variable is already assigned somehow. Note that this assignment might
be via another dummy variable, as with the seq function being combined with
the sum function in part (c.).

(14) This exercise is an introduction to the map function, which applies a function
to each element of an expression. For the purposes of this exercise we have used
only lists, but the same concepts we see in (Ex 8.) regarding op, nops, and
numboccur apply here.

AN INTRODUCTION TO MODERN MATHEMATICAL COMPUTING WITH Maple 31

Note that parts (a.) through (f.) are meant to be demonstrative, and should
give the student clues about how to solve parts (g.) through (i.). Students should
also look map up in the help files.

(15) This exercise demonstrates some more advanced usage of for loops. They are
shown using incrementation in steps other than 1, including variable assignment
from arbitrary lists. Also, the while keyword is introduced.

Note that parts (a.) through (f.) are meant to be demonstrative, and should
give the student clues about how to solve parts (g.) through (i.).

(16) This exercise is intended to clarify the difference between a local and a global
variable. The student is expected to recognise that the function modifies all of
the variables a,b,G, and H. The student should recognise that the modifications
to variables a and b do not affect the variables by the same name in the main
worksheet, whereas the changes the procedure makes to variables G and H do
affect the variables with the same name in the main worksheet. Students who
have seen scoping in other languages before should recognise this concept. Other
students may well need alternative explanations.

(17) This exercise is to give the student practice in writing procedures. Part (a.)
requires the student to realise that there is a possibility of double-counting mul-
tiples of 35. Some students will not realise this, and will unknowingly produce
an incorrect solution, even if they do test their procedure against some hand
calculations as the exercise suggests.

Part (b.) requires the student to create a function of multiple variables. The
procedure the student creates will need to accept initial conditions as procedure
arguments. The student will also need to find some way to accept an argument
telling the procedure how many terms of the sequence to print. This will most
likely be a third argument to the procedure, however an enterprising student
could very well have their procedure return a new procedure which prints terms
of the sequence based on an argument.

(18) This exercise is to get the student thinking about nesting. The student will need
to recognise the two recursive patterns in the triangle (going down the rows, and
going along the rows). Part (b.) is to reinforce the idea of writing functions or
procedures to allow easy repetition of similar computations.

(19) This exercise illustrates the recursive call limit, and how to bypass it with the
remember option. It also explains the comment at the bottom of p39 about the
difficulty of finding an argument to the Fibonacci number calculator that will
cause the function to take approximately a second to complete its computation.

In order to avoid unterminated loops appearing as part of an infinite back-
wards recursion, Maple limits the number of recursive calls which can happen
before it cancels the computation, and issues an error. Some computations sim-
ply use too many recursions. Using the remember option allows us to perform
these computations in stages. The student should notice that none of fib(6000),

32 A. EXERCISE GUIDE

fib(4000), or fib(3000) will compute immediately, but that fib(4000) will suc-
cessfully compute after the computation of fib(2000). Similarly, fib(6000) will
successfully compute after fib(4000), but not before.

Note that the execution times are quite quick; all should be well less than a
second. This, combined with the observation from the text regarding the mea-
sured execution times of this recursive procedure, should explain why we could
not find a single computation which took approximately a second.
Warning: in order for subparts (i.) through (iii.) of part (a.) to properly
fail, they must be executed when the function has only the initial values in its
remember table. This will usually be immediately after defining the function, or
after the use of the forget function. If the student does some experimentation or
testing of the fib function before attempting the question, they may not see the
expected result.
Maple Version Discrepancies: note that different versions of Maple are ca-
pable of different amounts of recursive calls before giving an error. Discrepancies
can even exist between the GUI interface and the console interface. Some trial
and error might be needed to find arguments for the fib function which exhibit
the behaviour described herein.

(20) This exercise is simply to illustrate that the % operator does not work as one
might expect with arrow notation functions, and that the unapply function
should be used instead.

(21) This exercise is to give the student practice at induction. It revisits arithmetic
progressions, and has the student perform induction on entire families of arith-
metic progressions at once.

(22) This exercise demonstrates the difference between decimal approximations and
rational numbers, even if the two ought to represent the same number on paper.
The student should find that the loop will not terminate, and that xi always
has 10 digits of precision. This is despite the fact that the loop terminates if we
instead begin with the rational number 123456789/10000000000. Maple does not
consider 0.123456789 to be the exact rational number 123456789/10000000000.

(23) This exercise shows an interesting property of some finite continued fractions
related to the continued fraction of the golden ration. The student should notice
that each of the continued fraction gives a ratio of successive Fibonacci numbers.
This is related to the result limn−>∞ fn+1/fn = φ where fi is the ith Fibonacci
number, and φ is the golden ratio.

(24) This exercise is mostly practice with the concept of continued fractions, with a
small amount of exploration. None of the numbers appear to have any discernible
pattern. The student may think they see a pattern if they compute only few
terms of the continued fraction, and so should be encouraged to test their ideas
by computing more terms to see if the pattern persists.

AN INTRODUCTION TO MODERN MATHEMATICAL COMPUTING WITH Maple 33

(25) This exercise is challenging. It provides practice in using the rsolve command,
and also reinforces the idea of testing results given by Maple. Note that f(n) is
an arbitrary function.

The student will likely be unable to solve such a recurrence by hand, but is
expected to use basic principles of recurrence relations to test the result given
by the rsolve. The student likely will not be able to verify the answer in full
generality, even with the aid of Maple. Instead, the student should choose some
pairs of f and p. In some simple cases the result can be easily and directly
verified. For others, it is suggested that the student compute the first 20 or so
terms of the recurrence using both the definition of the recurrence relation and
the expression given by rsolve. These values may be compared.

(26) This exercise is simply practice in using rsolve. The student should be able to
verify all solutions by substitution into the recurrence relation definition.

(27) This question expects the student to find a way to describe the problem as a
recurrence relation. Once this is done, then rsolve is all that is needed to solve
the problem. The solution is a Fibonacci-like relation. If the student finds an
alternate (but still correct) solution that does not involve recurrence relations,
then more power to them. The author is not aware of such a solution.

(28) This exercise has the student measure execution times of the Sieve of Eratos-
thenes, and use this data to predict future execution times. Note that the sieve,
as implemented, does not have a linear execution complexity, although it is still
very efficient. Of particular note is the slowness of the part of the implementation
that collates the primes into a sequence. This technique of “growing” a list one
element of a time produces a new list at each step, with the current elements
being copied to the new list.

There is much experimentation that can be done in this exercise. Many
different implementations of functions which compute primes less than or equal
to a given bound can be tried, measured and compared. This is a good time
for the student to try plotting sequences, if they are familiar with the plotting
commands.

Calculus. For most of the exercises in this section, judicious use of the plot command
can help the student visualise parts of the problem. This is encouraged for all exercises.
This should be considered a standing recommendation and we will not explicitly mention
this for every exercise.

(1) This exercise is simply to introduce the student to the various student “tutors”
and packages that come bundled with Maple. These tutors are interactive, and
are designed to help students with typical mathematics found in high-school, and
university.

Note that, in practice, the author has found that students sometimes think
that they are expected to use these tutors for subsequent exercises. This is not
the intention, however if the student is not discouraged from doing so if they can

34 A. EXERCISE GUIDE

make good use of the tools. Such students might need to be encouraged to try
and use other techniques when the tutors prove insufficient to the task of solving
later exercises.

(2) This exercise is intended to give the student practice in using the plot command.
For most of these plots, the student is expected to spend some time thinking
about sensible plot ranges, and to make sure they show as much information
as possible with their plots. Students are discouraged from simply typing the
appropriate plot command, and moving on.

Note that parts (e.) and (f.) produce misleading or unexpected plots in
Maple version 12. The plot for part (e.) puts the horizontal axis on the line
y = 1 instead of the more usual y = 0. The plot for part (f.) produces a “zig-
zaggy” plot showing the decimal fluctuation in the low-order digits of the decimal
approximations of the sample points. Close attention to the scale of the vertical
axis should illuminate these errors should they show up. The intent of these parts
was to reinforce careful attention on the part of the student. Some later versions
of Maple no longer make these errors.

(3) This exercise is practice in computing limits. The student will need to consider
both left and right limits of undefined points. Plots can help, but basic calculus
skills should not be neglected.

(4) This exercise is demonstrative of a common mistake in first year. The student
should find a value of x for which the second derivative of the function is 0,
however this point is not an inflection point. A plot of the function should
demonstrate this fact nicely.

(5) This question is a minor challenge, and also practice in using the integration
tools package. The student will need to recognise the original integral during the
course of the computation, however the integral will likely be using a different
dummy variable in this case.

(6) This exercise is practice in performing optimisation computations. The student
will need to remember the that the length of an arc is proportional to its angle
in radians. Once this is realised, the radius of the circle at the top of the cone,
and the height of the cone can be computed, and hence the volume of the cone.
Judicious use of functions, as demonstrated in §2.2.1 should help the student
keep everything reasonably neat and easier to follow. The student will need to be
discriminating when evaluating the points at which the first derivative vanishes.
Checking these points by substituting them into the first derivative likely require
giving Maple assumptions about some variables so that it may correctly simplify
the resulting expressions.

Note that the radius R is entirely arbitrary, and does not affect the final
result. This is interesting, but may be missed by the student.

AN INTRODUCTION TO MODERN MATHEMATICAL COMPUTING WITH Maple 35

(7) This exercise is practice in numeric evaluation of integrals, and also in use of
inverse symbolic computation. Some of these integrals will be able to be per-
formed automatically by Maple, and some will need to be numerically evaluated
and identified via inverse symbolic computation

Note that messy polylogarithms can be banished with the simplify com-
mand. If the student tries to numerically evaluate these polylogarithms (without
simplifying them), they will get a complex answer (although the imaginary part
of this number will be negligible). This may alternatively be avoided by forcing
Maple to perform numeric integration using the numeric argument to the int
function.

At least one of the integrals will produce a decimal approximation which
Maple’s identify function will not automatically identify. The student is ex-
pected to spend some time looking through the help files for the identify function.
These files are advanced and confusing, but some persistence should eventually
yield a list of constants that several steps of the function use. Some of the con-
stants explicitly listed by the exercise are not in this list, and the student must
find the option that allows them to add such constants. Once this is done, the
results follow. The student should test these results to extra precision levels to
boost their confidence in the veracity of the identification.

Note that (e.) and (f.) are highly unlikely to be able to be correctly identified
by the student. Shortly after the publication of the text, a closed form was found
for the integral in part (e.). These two were included solely for interest, and to
remind the student that unanswered questions exist.

(8) This exercise provides practice in using the dsolve function, and in verifying
results. Verification is as simple as substituting the solution back into the dif-
ferential equation. Note that the constant that is referred to is the constant of
integration which will appear in the solution of the differential equation. These
equations should be able to be solved by hand by any student taking this course.

Plotting the solution curves is a nice visualising touch. Students may simply
plot the curves using the plot command manually. However, the enterprising
student is encouraged to attempt to work out the DePlot function, as suggested
by the exercise itself. Doing so should produce both a vector field, as well as the
requested solution curves.

(9) This exercise introduces the Bessel functions to the student. The student is likely
incapable of solving these differential equations by hand, but they may verify the
solution given to them by the dsolve function.

(10) This exercise consists of two challenges in plotting with polar coordinates.
Part (a.) is a cute exercise in drawing Pac-Man. The student is required to

use the plotting techniques demonstrated in §2.2.5 and some lateral thinking to
produce a plot of pPa. Only the basic outline is needed; the student need not fill
the interior, or add the eye (however, if the student succeeds in this, then all the
better).

36 A. EXERCISE GUIDE

Part (b.) requires the student to find the polar equation of a particular circle.
Note that this question is not asking for the polar equation of a general circle
with a general centre. The student will likely need to use the standard identities
for converting between cartesian and polar coordinates. The resulting equation
is messy, but with Maple to handle the algebra, is reasonably straightforward.

(11) This exercise is practice in using the techniques of computing volumes of rotation
as seen in §2.3.2. The interesting result hinted at in part (a.) is that the result
should be exactly the same as the volume of rotation obtained by rotating area
underneath the same curve (i.e., between the curve and the x-axis) around the
z-axis. The paraboloid effectively cuts the volume of a cylinder in half.

(12) This exercise is practice in finding and classifying critical points in functions of two
variables. Note that in part (b.) that the solutions produced by solve for when
the partial derivatives vanish that involve the RootOf function. In particular,
we see something along the lines of RootOf (−1 + 2z2) which is Maple’s way of
representing the solution set of −1 + 2z2 = 0. The student will need to look in
the help files to find this information. A plot of the function should suggest the
existence of 4 or 5 critical points, instead of the 2 which are suggested by the
result of the solve function.

(13) This exercise provides more practice in verifying differential equations; partial
differential equations this case. The solutions are given and the student is re-
quired only to verify them by substitution into the partial differential equation.
The enterprising student might find and use the pdsolve and find that a solu-
tion, or the student might simply notice that all the solutions presented are a
function of x − y. In any event, the student should verify their general solution
by substitution.

(14) This exercise is a demonstration of a case in which Clairaut’s theorem fails.
Students will likely find this challenging. In order to see the difference in the
second derivatives, the limit definition of definitions must be used. Fortunately,
this definition need only be used for the case of the origin.

Note that the use of piecewise to define the function f will not be illuminat-
ing, as Maple will differentiate it part by part, with no regard to the limits. That
is, Maple will give an incorrect answer for the partial derivatives. The author
recommends defining f to be the function (x, y) 7→

(
xy(x2 − y2)

)
/
(
x2 + y2) and

to explicitly define f(0, 0) to be equal to 0 (in much the same way initial values
are assigned for recursive functions in Chapter 1).

(15) This exercise provides practice in interpreting areas as iterated integrals, and in
computing iterated integrals. Note that parts (c.) and (d.) require expressions
in the variable y to be part of the range argument to the int command. The
student will not have seen this before, but if they simply attempt to write the
expressions into the range argument, they should find that it works just fine.

AN INTRODUCTION TO MODERN MATHEMATICAL COMPUTING WITH Maple 37

Linear Algebra. Note that, with the exception of (Ex 1.), the student may use
whichever method they prefer when entering matrices or vectors.

(1) This question is simply practice in entering matrices and vectors into Maple.
The questions are prescriptive as to method used so as to make sure the student
practices each method. This is the only question which prescribes methods of
entering matrices and vectors.

Note that for part (c.) the student is required to recognise a family of matrices
by their pattern, and to write a function whose argument (or arguments) are the
parameters for that family. The student should be able to compute specific
members of the relevant family using the function they create. For example, the
case where n = 7 of part (i.), or the case where n = 6,m = 8 for parts (ii.) or
(iii.).

(2) This exercise provides practice with matrix and vector arithmetic in Maple. Parts
(b.) and (c.) have the student recall results from first-year linear algebra, so that
the examples are not quite so contrived, and require a little problem solving.

(3) This exercise is practice with linear systems. Plotting the systems is a handy
way to visualise the system, whether it has a solution or not. In some cases, the
visualisation of how a system fails to have a solution can be illuminating for the
student who is weaker in first-year linear algebra.

To express the solutions of the systems in part (b.), the reader is required to
understand that solving a system of simultaneous linear equations is equivalent
to solving the matrix equation Ax = b. If the student understands that this,
in turn, is equivalent to solving questions of linear combinations of the column
vectors of A, then all the better.

(4) This exercise requires the student to see a pattern in a family of matrices, and
reinforces the techniques from (Ex 1.) part (c.). In this case there are initially
apparently two related patterns, depending on whether n is odd or even, however
closer inspection should yield a single pattern which works in both cases.

(5) This exercise is simply practice in finding inverses through row reduction, and
manipulation of matrices in Maple. Note that this is not a sensible way of finding
matrix inverses in Maple. The student is required to understand the proof from
§3.1.3 sufficiently to realise that if the reduced row echelon form of a matrix is
no the identity matrix, then it is not an invertible matrix.

The student need not use elementary matrices to solve this question (and,
in fact, is encouraged not to). Simply constructing the augmented matrix using
angle bracket notation and the | operator, and using the ReducedRowEche-
lonForm function is sufficient.

(6) This exercise tests whether the student understands the theorem from §3.1.3
regarding equivalent properties of an invertible matrix. The student who does
not understand this theorem should still be capable of answering the question,
but will take far longer do to so; checking each property separately.

38 A. EXERCISE GUIDE

(7) This exercise is intended to reinforce the concepts introduced in §3.1.3. Note
that this is a horrible way to find inverses from a practical point of view, however
it should reinforce the ideas involved in invertible matrices being built out of
elementary matrices. The student need not actually use elementary matrices; the
RowOperation function will suffice.

Note that the student is encouraged reverse the order of the operations, and
apply them to the identity matrix to make sure they get their original matrix
back.

(8) This exercise reinforces the idea finding linear combinations by solving linear
systems. For part (b.) the student will need to be able to convert between the
polynomial spaces, and Rn.

(9) This exercise reinforces the idea that questions of linear dependence, and ques-
tions of linear combinations are one in the same. The student is expected to use
information gleaned from their solution to (Ex 8.) to reduce the work required
for this exercise.

The student who recalls that a set of vectors are linearly dependent if one
can be written as a combination of the others may use this to rule out some
sets of vectors or polynomials. However such a student should realise that any
inconsistent systems from (Ex 8.) will require further checking. The weaker
student might simply check each of the sets of vectors from (Ex 8.).

(10) This exercise is a challenge to the student to extend the techniques used in the
text to form an isomorphism between Pn(F) and Fn. In this case the student is
expected to realise that the matrix spaceMn(R) is n2-dimensional and to produce
suitable functions for conversion between elements of Mn(R) and Rn2 .

(11) This exercise is a challenge. Part (a.) is largely conceptual, but requires some
thought. Note that a formal proof is not necessary, a good “hand-waving” argu-
ment should suffice.

Part (b.) requires the student to extrapolate the techniques from §3.3.2 for
finding a matrix representation of a linear transformation, however in this case
they will not have a function implemented in Maple with which to rely upon.
Thought on the part of the student should yield that rotation in, say, the xz
plane will not affect the y component of a vector (and similarly for the other
planes stipulated).

The remainder of the question is a challenge.
(12) This exercise provides practice in computing eigenvectors and eigenvectors in

Maple.
(13) This exercise requires the student to do some problem solving. Part (a.) requires

the student to realise that powers of a diagonal matrix remain diagonal, and to
use that realisation to solve the problem. Part (b) requires the student to recall
from §3.3.4 that powers of diagonalisable matrices rely only on computing powers
of the diagonal “part” of that matrix (i.e., the D where M = P−1DP).

(14) This exercise provides practice in diagonalising matrices.

AN INTRODUCTION TO MODERN MATHEMATICAL COMPUTING WITH Mathematica 39

An Introduction to Modern Mathematical Computing with Mathematica

This document is intended to act as a guide to the exercises in the book “An Intro-
duction to Modern Mathematical Computing with Mathematica”. It is primarily intended
for instructors, lecturers, tutors or the like, and outlines the intent of the exercises, as well
as any technical points, stumbling blocks, or other significant point the student or reader
might miss. Students should feel free to read the contents of this document, but should
be warned that the material is aimed at a higher level than the books are aimed at.

For the duration of this document we will refer to the person attempting the exercises
as the student, although we acknowledge that not everybody attempting the exercises
from the text will necessarily be a student. The book itself, and the exercises therein, was
primarily written as a text to accompany a second year university course, and as such the
exercises were written with teaching students in mind.

Number Theory.

(1) The goal of this exercise is to give students practice in entering basic expressions
into Mathematica, as well as in using the N function. Note that part (h.) may
potentially lead to a discussion as to the precedence of taking powers. That is

22222

= 2

2

(
2(22)

)
6=
(((

22
)2
)2
)2

= 22·2·2·2

Furthermore, Mathematica gives an exact integer answer consisting of the entire
19,729 digits, but rounds rounds the floating point approximation to 16 significant
figures (or however many significant figures the student specifies).

(2) This exercise is to show the student how Mathematica (or, specifically, the N
function) handles digit precision of decimal approximations. Note that parts (a.)
through (d.) are meant to be demonstrative, and should give the user clues about
how to solve parts (f.) through (h.).

Also, note that Mathematica does not have a way of setting precision for
an entire notebook (or, at least, the author has thus far failed to find one).
Precision is handled on a per-number basis, with the most appropriate precision
being selected automatically for most numeric computations.

(3) This exercise demonstrates two possible stumbling blocks. Firstly (part (a.)) that
some variable names are protected in Mathematica. Common names the students
will likely end up wanting to use themselves will be I (the imaginary unit) and
D (the differential operator). This exercise should introduce the idea that some
variable names are already taken, and can’t be used.

Note that Mathematica provides the capability to remove or grant protection
via the Unprotect and Protect functions respectively. Doing so should not be
necessary in the context of the book, or its exercises, and so these functions are
not mentioned at all there.

40 A. EXERCISE GUIDE

Secondly, (part (b.)), demonstrates a common misunderstanding with the %
operator. Specifically, the % operator represents the result of the most recently
performed computation. This exercise demonstrates that the most recently per-
formed computation is not necessarily the computation on the previous line of
the workbook.

(4) This exercise has the student learn a little about the Array function, and also
introduces pure functions. The student is expected to consult the Documentation
Center regarding both topics. Note that the Array function is used in §1.2.6, and
a brief explanation of it can be found there.

Array is similar to Table, but differs in that it must be initialised by a
function (its first argument) and that it does not use the iterator notation. On
the whole, the author finds Array to be less flexible than Table, but useful in
some specific circumstances.

Pure functions allow the expression of functions without having to assign a
name to the function, and without using Mathematica’s pattern matching func-
tionality. Note that pure functions may be assigned using the & operator, as
shown in this exercise, or equivalently using the Function function.

(5) This exercise is to show the student some of the more technical capabilities re-
garding iterator notation. Note that parts (a.) through (d.) are meant to be
demonstrative, and should give the student clues about how to solve parts (e.)
and (f.).

Note that the intent for part (f.) was to have the student to solve the exer-
cise using a list inside iterator (i.e., with Table[1/k, {k,{1,2,4,7,11,16}}] or
something similar). Some students notice that the denominators exhibit a pat-
tern where first 1 is added, then 2, then 3, and so on. Some careful mathematics
should show that the kth term of this sequence is 1 + n (n−1)

2 and so the problem
may be solved by Table[2/(kˆ2-k+2), {k,1,6}].

(6) This exercise is to show the student how a list may be indexed in reverse. Note
that the failures are produced because the ranges are backwards. For example,
part (g.) is equivalent to asking for L[[10;;8]], which is not a valid range
because the left hand side is larger than the right hand side.

(7) This exercise is to demonstrate the Length and Count functions. The student
is expected to look at the Documentation Center to work out how to solve the
challenge at the end of the exercise. Note that the Count function can make use
of Mathematica’s pattern matching for its second argument if needed, although
this exercise does not demonstrate this.

Also note that the Count function is capable of counting patterns that appear
as sub-expressions of any Mathematica expression, although we do not demon-
strate that functionality in this exercise. The Length function is also capable of
operating on arbitrary expressions, although its behaviour in this case is highly
technical and beyond the scope of the book and these exercises.

AN INTRODUCTION TO MODERN MATHEMATICAL COMPUTING WITH Mathematica 41

(8) This exercise is related to the further exploration of normal numbers (§1.5, p65).
If the student looks in the Documentation Center they should find a function
which will produce the desired result more or less directly. If this function is
not found, the student may write their own such function. A loop consisting of
truncation, multiplication by 10 and subtraction should suffice. The student in
this situation ought to be careful to make sure they begin the procedure with
enough precision, or rounding errors might creep in.

(9) This exercise is to give the student practice at computing sums and products,
as well as converting between mathematical notation of sums and products, and
Mathematica code. Parts (e.) and (f.) are familiar taylor series that the student
should recognise from first year mathematics, and which Mathematica should
immediately recognise and simplify. Parts (g.) through (h.) require the student
to interpret the ellipsis notation.
Typo: in parts (e.) and (f.) the dummy variable printed on the big sigma should
be n, but is printed as k.

(10) This exercise is part practice with function creation, and part binomial experi-
mentation. Note that the student will need to use Mathematica’s Documentation
Center to find the function that computes the binomial coefficients.
Typo: Part the first sentence of part (d.) should read Ask Mathematica to
evaluate g(N). (The function should he g, instead of f).

(11) This exercise explores a relationship between sums and products. Note that
Mathematica is unable to compute these sums symbolically, and consequently
the student will need to use numeric approximations. The student should find
that the value they obtain for part (c.), when raised as the power of e, should be
the same as the value they obtain for part (a.).

In order to justify the relationship in general, limits of partial sums will need
to be used. This justification may be proved on paper or in Mathematica as the
student prefers.
Typo: part (d.) should read “Verify that the relationship described at the be-
ginning of this exercise holds for the sum and product from parts (a.) and (c.)
respectively.”

(12) This exercise is intended to give the student a mathematical definition (or con-
cept) they have likely not seen before, and leads them through an exploration
of the concept. Note that the student is expected to extrapolate the meaning of
hexagonal numbers from the explanation of triangular, square, and pentagonal
numbers given.

(13) This exercise is an introduction to the Map function, and the operator, and
a revisiting of pure functions. The Map function will apply a function to each
element of an expression. For the purposes of this exercise we have used only
lists, but much like the Count function introduced in (Ex 7.), the Map function
will work on any Mathematica expression.

42 A. EXERCISE GUIDE

Note that parts (a.) through (f.) are meant to be demonstrative, and should
give the student clues about how to solve parts (g.) through (i.). Students are
also encouraged look up the Map function in the Documentation Center.

(14) This exercise demonstrates some advanced loops. The advanced iterator nota-
tions from (Ex 5) are used with Do loops, and While loops are introduced. Pure
functions are also touched on once more.

Note that parts (a.) through (f.) are meant to be demonstrative, and should
give the student clues about how to solve parts (g.) through (i.).

(15) This exercise is to give the student practice in writing procedures. Part (a.)
requires the student to realise that there is a possibility of double-counting mul-
tiples of 35. Some students will not realise this, and will unknowingly produce
an incorrect solution, even if they do test their procedure against some hand
calculations as the exercise suggests.

Part (b.) requires the student to create a function of multiple variables. The
procedure the student creates will need to accept initial conditions as procedure
arguments. The student will also need to find some way to accept an argument
telling the procedure how many terms of the sequence to print. This will most
likely be a third argument to the procedure, however an enterprising student
could very well have their procedure return a new procedure which prints terms
of the sequence based on an argument.

(16) This exercise is to get the student thinking about nesting. The student will need
to recognise the two recursive patterns in the triangle (going down the rows, and
going along the rows). Part (b.) is to reinforce the idea of writing functions or
procedures to allow easy repetition of similar computations.

(17) This exercise introduces the NSum function, which behaves much like the Sum
function, except that it performs purely numeric computations.. The student is
required to use the Documentation Center in order to solve the exercise. Timing
methods are expected to be employed to see whether the techniques from §1.2.2
(involving the Sum function as an argument to the N function) are slower than
using Nsum directly.

(18) This question challenges the student to find an iterative way to compute Fibonacci
numbers. An iterative method should avoid the problem described in §1.2.6 p48
regarding the computation of Fibonacci numbers past the 7,000th. Note that
the student should beware of the problems inherent in timing recursive functions
which remember previous computed values, as discussed in §1.2.6.

(19) This exercise is simply to illustrate that the % operator does not work as one
might expect when defining functions, and that the Evaluate function should be
used instead.

(20) This exercise is to give the student practice at induction. It revisits arithmetic
progressions, and has the student perform induction on entire families of arith-
metic progressions at once.

AN INTRODUCTION TO MODERN MATHEMATICAL COMPUTING WITH Mathematica 43

(21) This exercise demonstrates the difference between decimal approximations and ra-
tional numbers, even if the two ought to represent the same number on paper. The
student should find that the loop will not terminate, and that x[i] always have
approximate the same amount of precision. This is despite the fact that the loop
terminates if we instead begin with the rational number 123456789/10000000000.
Mathematica does not consider 0.123456789 to be the exact rational number
123456789/10000000000.

(22) This exercise shows an interesting property of some finite continued fractions
related to the continued fraction of the golden ration. The student should notice
that each of the continued fraction gives a ratio of successive Fibonacci numbers.
This is related to the result limn−>∞ fn+1/fn = φ where fi is the ith Fibonacci
number, and φ is the golden ratio.

(23) This exercise is mostly practice with the concept of continued fractions, with a
small amount of exploration. None of the numbers appear to have any discernible
pattern. The student may think they see a pattern if they compute only few
terms of the continued fraction, and so should be encouraged to test their ideas
by computing more terms to see if the pattern persists.

(24) This exercise is challenging. It provides practice in using the RSolve function,
and also reinforces the idea of testing results given by Mathematica. Note that
f(n) is an arbitrary function.

The student will likely be unable to solve such a recurrence by hand, but is
expected to use basic principles of recurrence relations to test the result given
by the RSolve. The student likely will not be able to verify the answer in full
generality, even with the aid of Mathematica. Instead, the student should choose
some pairs of f and p. In some simple cases the result can be easily and directly
verified. For others, it is suggested that the student compute the first 20 or so
terms of the recurrence using both the definition of the recurrence relation and
the expression given by RSolve. These values may be compared.

(25) This exercise is simply practice in using RSolve. The student should be able to
verify all solutions by substitution into the recurrence relation definition.

(26) This question expects the student to find a way to describe the problem as a
recurrence relation. Once this is done, then RSolve is all that is needed to solve
the problem. The solution is a Fibonacci-like relation. If the student finds an
alternate (but still correct) solution that does not involve recurrence relations,
then more power to them. The author is not aware of such a solution.

(27) This exercise has the student measure execution times of the Sieve of Eratos-
thenes, and use this data to predict future execution times. Note that the sieve,
as implemented, does not have a linear execution complexity, although it is still
very efficient.

There is much experimentation that can be done in this exercise. Many
different implementations of functions which compute primes less than or equal
to a given bound can be tried, measured and compared. This is a good time

44 A. EXERCISE GUIDE

for the student to try plotting sequences, if they are familiar with the plotting
commands (or if they are adventurous).
Typo: Part (b.) should be ignored. There is no part to the implementation of
the sieve from §1.3.4 that collates the primes into a list, and so part (b.) cannot
be done.

Calculus. For most of the exercises in this section, judicious use of the plot command
can help the student visualise parts of the problem. This is encouraged for all exercises.
This should be considered a standing recommendation and we will not explicitly mention
this for every exercise.

(1) This exercise is intended to give the student practice in using the Plot command.
For most of these plots, the student is expected to spend some time thinking about
sensible plot ranges, and to make sure they show as much information as possible
with their plots. Students are discouraged from simply typing the appropriate
plot command, and moving on.

(2)
(3) This exercise is practice in computing limits. The student will need to consider

both left and right limits of undefined points. Plots can help, but basic calculus
skills should not be neglected.

(4) This exercise is demonstrative of a common mistake in first year. The student
should find a value of x for which the second derivative of the function is 0,
however this point is not an inflection point. A plot of the function should
demonstrate this fact nicely.

(5) This exercise is practice in performing optimisation computations. The student
will need to remember the that the length of an arc is proportional to its angle
in radians. Once this is realised, the radius of the circle at the top of the cone,
and the height of the cone can be computed, and hence the volume of the cone.
Judicious use of functions, as demonstrated in §2.2.1 should help the student
keep everything reasonably neat and easier to follow. The student will need to be
discriminating when evaluating the points at which the first derivative vanishes.

Note that the radius R is entirely arbitrary, and does not affect the final
result. This is interesting, but may be missed by the student.

(6) This exercise is practice in numeric evaluation of integrals, and also in use of in-
verse symbolic computation. Some of these integrals will be able to be performed
automatically by Mathematica, and some will need to be numerically evaluated
and identified via inverse symbolic computation. Numeric integration can be
performed by feeding the output of the Int function into the N function, or by
directly using the NIntegrate function.

Note that (e.) and (f.) are highly unlikely to be able to be correctly identified
by the student. Shortly before the publication of the text, a closed form was found
for the integral in part (e.). These two were included solely for interest, and to
remind the student that unanswered questions exist.

AN INTRODUCTION TO MODERN MATHEMATICAL COMPUTING WITH Mathematica 45

(7) This exercise provides practice in using the DSolve function, and in verifying
results. Verification is as simple as substituting the solution back into the dif-
ferential equation. Note that the constant that is referred to is the constant of
integration which will appear in the solution of the differential equation. These
equations should be able to be solved by hand by any student taking this course.

(8) This exercise introduces the Bessel functions to the student. The student is likely
incapable of solving these differential equations by hand, but they may verify the
solution given to them by the DSolve function.

(9) This exercise consists of two challenges in plotting with polar coordinates.
Part (a.) is a cute exercise in drawing Pac-Man. The student is required to

use the plotting techniques demonstrated in §2.2.5 and some lateral thinking to
produce a plot of PPac-Man. Only the basic outline is needed; the student need
not fill the interior, or add the eye (however, if the student succeeds in this, then
all the better).

Part (b.) requires the student to find the polar equation of a particular
circle. Note that this question is not asking for the polar equation of a general
circle with a general centre. The student will likely need to use the standard
identities for converting between cartesian and polar coordinates. The resulting
equation is messy, but with Mathematica to handle the algebra, is reasonably
straightforward.

(10) This exercise is practice in using the techniques of computing volumes of rotation
as seen in §2.3.2. The interesting result hinted at in part (a.) is that the result
should be exactly the same as the volume of rotation obtained by rotating area
underneath the same curve (i.e., between the curve and the x-axis) around the
z-axis. The paraboloid effectively cuts the volume of a cylinder in half.

(11) This exercise is practice in finding and classifying critical points in functions of
two variables. Note that in part (b.) that the Solve function might output a
warning when computing where the partial derivatives vanish. Nonetheless, a
list consisting of five solutions should be returned. A plot of the function should
suggest the existence of 4 or 5 critical points in keeping with the solutions provided
by Solve.

(12) This exercise provides more practice in verifying differential equations; partial
differential equations this case. The solutions are given and the student is required
only to verify them by substitution into the partial differential equation. The
enterprising student might find a function in the Documentation Center capable
of solving partial differential equations, or the student might simply notice that
all the solutions presented are a function of x − y. In any event, the student
should verify their general solution by substitution.

(13) This exercise is a demonstration of a case in which Clairaut’s theorem fails.
Students will likely find this challenging. In order to see the difference in the
second derivatives, the limit definition of definitions must be used. Fortunately,
this definition need only be used for the case of the origin. Note that the use of

46 A. EXERCISE GUIDE

Piecewise to define the function f will not be illuminating, as Mathematica will
differentiate it part by part, with no regard to the limits. That is, Mathematica
will give an incorrect answer for the partial derivatives. The author recommends
defining f to be the function (x, y) 7→

(
xy(x2 − y2)

)
/
(
x2 + y2) and to explicitly

define f(0, 0) to be equal to 0 (in much the same way initial values are assigned
for recursive functions in Chapter 1).

(14) This exercise provides practice in interpreting areas as iterated integrals, and in
computing iterated integrals. Note that parts (c.) and (d.) require expressions
in the variable y to be part of the range argument to the Integrate command.
The student will not have seen this before, but if they simply attempt to write
the expressions into the range argument, they should find that it works just fine.
Care should be taken to make sure the multiple iterators are presented in the
correct order.

Linear Algebra. Note that, with the exception of (Ex 1.), the student may use
whichever method they prefer when entering matrices or vectors.

(1) This question is simply practice in entering matrices and vectors into Mathe-
matica. The questions are prescriptive as to method used so as to make sure
the student practices each method. This is the only question which prescribes
methods of entering matrices and vectors.

Note that for part (c.) the student is required to recognise a family of matrices
by their pattern, and to write a function whose argument (or arguments) are the
parameters for that family. The student should be able to compute specific
members of the relevant family using the function they create. For example, the
case where n = 7 of part (i.), or the case where n = 6,m = 8 for parts (ii.) or
(iii.).
Typo: Part (a.) should read “Create the following vectors and matrices using
brace notation {}.”

(2) This exercise provides practice with matrix and vector arithmetic in Mathematica.
Parts (b.) and (c.) have the student recall results from first-year linear algebra,
so that the examples are not quite so contrived, and require a little problem
solving.

(3) This exercise is practice with linear systems. Plotting the systems is a handy
way to visualise the system, whether it has a solution or not. In some cases, the
visualisation of how a system fails to have a solution can be illuminating for the
student who is weaker in first-year linear algebra.

To express the solutions of the systems in part (b.), the reader is required to
understand that solving a system of simultaneous linear equations is equivalent
to solving the matrix equation Ax = b. If the student understands that this,
in turn, is equivalent to solving questions of linear combinations of the column
vectors of A, then all the better.

AN INTRODUCTION TO MODERN MATHEMATICAL COMPUTING WITH Mathematica 47

(4) This exercise requires the student to see a pattern in a family of matrices, and
reinforces the techniques from (Ex 1.) part (c.). In this case there are initially
apparently two related patterns, depending on whether n is odd or even, however
closer inspection should yield a single pattern which works in both cases.

(5) This exercise is simply practice in finding inverses through row reduction, and
manipulation of matrices in Mathematica. Note that this is not a sensible way of
finding matrix inverses in Mathematica. The student is required to understand
the proof from §3.1.3 sufficiently to realise that if the reduced row echelon form
of a matrix is no the identity matrix, then it is not an invertible matrix.

The student need not use elementary matrices to solve this question (and, in
fact, is encouraged not to). Simply constructing the augmented matrix and using
the RowReduce function is sufficient.

(6) This exercise tests whether the student understands the theorem from §3.1.3
regarding equivalent properties of an invertible matrix. The student who does
not understand this theorem should still be capable of answering the question,
but will take far longer do to so; checking each property separately.

(7) This exercise is intended to reinforce the concepts introduced in §3.1.3. Note
that this is a horrible way to find inverses from a practical point of view, however
it should reinforce the ideas involved in invertible matrices being built out of
elementary matrices. The student need not actually use elementary matrices; the
row operation functions defined in §3.1.3 will suffice.

Note that the student is encouraged reverse the order of the operations, and
apply them to the identity matrix to make sure they get their original matrix
back.

(8) This exercise reinforces the idea finding linear combinations by solving linear
systems. For part (b.) the student will need to be able to convert between the
polynomial spaces, and Rn.

(9) This exercise reinforces the idea that questions of linear dependence, and ques-
tions of linear combinations are one in the same. The student is expected to use
information gleaned from their solution to (Ex 8.) to reduce the work required
for this exercise.

The student who recalls that a set of vectors are linearly dependent if one
can be written as a combination of the others may use this to rule out some
sets of vectors or polynomials. However such a student should realise that any
inconsistent systems from (Ex 8.) will require further checking. The weaker
student might simply check each of the sets of vectors from (Ex 8.).

(10) This exercise is a challenge to the student to extend the techniques used in the
text to form an isomorphism between Pn(F) and Fn. In this case the student is
expected to realise that the matrix spaceMn(R) is n2-dimensional and to produce
suitable functions for conversion between elements of Mn(R) and Rn2 .

48 A. EXERCISE GUIDE

(11) This exercise is a challenge. Part (a.) is largely conceptual, but requires some
thought. Note that a formal proof is not necessary, a good “hand-waving” argu-
ment should suffice.

Part (b.) requires the student to extrapolate the techniques from §3.3.2 for
finding a matrix representation of a linear transformation, however in this case
they will not have a function implemented in Mathematica with which to rely
upon. Thought on the part of the student should yield that rotation in, say, the
xz plane will not affect the y component of a vector (and similarly for the other
planes stipulated).

The remainder of the question is a challenge.
(12) This exercise provides practice in computing eigenvectors and eigenvectors in

Mathematica.
(13) This exercise requires the student to do some problem solving. Part (a.) requires

the student to realise that powers of a diagonal matrix remain diagonal, and to
use that realisation to solve the problem. Part (b) requires the student to recall
from §3.3.4 that powers of diagonalisable matrices rely only on computing powers
of the diagonal “part” of that matrix (i.e., the D where M = P−1DP).

(14) This exercise provides practice in diagonalising matrices.

	Statement of Originality
	Thesis by Publication
	Statement of Contribution
	Abstract
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Maple
	Chapter 3. Mathematica
	Chapter 4. Epilogue
	References
	Appendix A. Exercise Guide

